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Let G be a connected real semisimple Lie group with finite center, and
t its Lie algebra. Generalized Gelfand-Graev representations (GGGRs),
first introduced by Kawanaka [2] for finite reductive groups, form a series
of induced representations of G parametrized by nilpotent Ad (G)-orbits in. In particular, a principal nilpotent class gives rise to a representation
of G induced from a non-degenerate character of a maximal unipotent
subgroup. This special type of GGGR, attributed to Gelfand-Graev, is of
multiplicity free if G is quasi-split [5].

In this note, we first generalize van den Ban’s finite multiplicity theo-
rem [1] for the quasi-regular representation Ind,(1.) associated with a
semisimple symmetric space G/H, and give nice sufficient conditions for
induced representations of G to be of multiplicity finite. Then_, applying
these criterions, we show that certain interesting types of GGGRs, closely
related to the regular representation of G, have finite multiplicity property.
Our finite multiplicity theorems are given for reduced GGGRs (RGGGRs),
a variant of GGGRs. We also give a multiplicity one theorem for RGGGRs
under some additional assumptions.

1. Criterions for finite multiplicity property. Let -@p be a Cartan
decomposition of g, and the corresponding Cartan involution of ;I, which
can be lifted up canonically to an involution of G. Denote by K the
maximal compact subgroup of G consisting of fixed points of 8 on G. Let
Q=LN with L=Q SQ, denote a Levi decomposition of a parabolic sub-
group Q of G. Let a be an involutive automorphism of =_Lie(L) satis-
fying: (1) a commutes with 1, and (2) a coincides with on the split
component a of I:. Take a closed subgroup H of L with Lie algebra =_
{X e aX=X}.

For a continuous representation of the semidirect product subgroup
HN=H<N on a Fr6chet space , we consider the representation C-Ind()=(z, C(G; )) o G induced from in C-context the group G
acts on the representation space

C(G )-{f" G-c> f(gz)=(z)-lf(g) (g e G, z e HN)},
by left translation. C(G ) has a U(gc)-module structure through differen-
tiation, where U(;Ic)denotes the enveloping algebra of gc=_(R)C. Let
be the center of U(gc). For an algebra homomorphism Z" C, the joint
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Z-eigenspace C(G; " Z) for =() is G- and c-stable. For r e/, the unitary
dual of K, denote by )(G; " Z) the r-isotypic component of C(G; " Z).
An element of (G; " z), necessarily real analytic on G, is called a (r, " z)-
spherical function.

Now let p be an irreducible admissible (c, K)-module with infinitesimal
character ;. Every embedding of p into carries r-isotypic vectors for p
to (r, ’;0-spherical functions. So, the multiplicity I(p, ) of p in as
submodules is bounded as
(1.1) I(p, )mine [(dim (G; " ;0)/I(r, p)],
where I(r, p) denotes the multiplicity of in p as a K-module.

Suggested by this inequality, we estimate dimensions of spaces
(G" " ;0 o2 spherical functions. Let q be the (-1)-eigenspace for a on !:,
and %(a) a maximal belian subspace o p q. The centralizer 17 of %
in g is a reductive Lie subalgebra of g. Denote by M the centralizer of

% in K V H.
Theorem 1. Let R and R. denote the orders of Weyl groups of qc and

[’c respectively. Then one has
dim/(G " Z)(R,/R).dim r.I,p,(r, ),

where I,(r, ) denotes the intertwining number from r lM. to M,.
This theorem together with (1.1) yields in partieular a hereditary

eharaeter of finite multiplicity property as ollows.
Theorem 2. The induced representation --C-Ind() has finite

multiplicity property if so does the restriction of to M.
Now assume to be unitary, and consider the unitarily induced repre-

sentation U----L-Ind (). Let U [[m()].dz() be the factor decom-

position of U, where is a Borel measure on the unitary dual of G, and

me" G -- {0, 1, 2, } (2 {oo}, the multiplicity function for U. Using the
result of Penney [4], we can show that
(1.2) m()<=I(p, ) for almost all/ e with respect to/,
at least when 4 is finite-dimensional. Here, p denotes the irreducible
(c, K)-module of K-finite vectors for a unitary representation of class e .
Thus one obtains

Theorem :. The L-induced representation U is of multiplicity finite
whenever is finite-dimensional.

These two theorems cover various finite multiplicity theorems for
induced representations of G, especially the case of van den Ban as Q=L

G, = ln, the trivial character of H.
2. GGGRs/’,. Hereafter, assume that G/K is an irreducible hermitian

symmetric space. We construct the (reduced) GGGRs explicitly. (See [2],
[6] for the definition o GGGRs in full generality.)

Let G=KAN be an Iwasawa decomposition of G. Put/=dim A.
By Moore [3], the Dynkin diagram of the root system of (g, %), %=--Lie (A),
is expressed as
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(I) (C) (C)(C) if G/K is of tube type,

(II) - (C)(C) if G/K is of non-tube type.
Let Q:LN, QMAN, be the maximal parabolic subgroup of G such that
()_< generates the root system of its Levi subgroup L, where M denotes
the centralizer of A in K. Then the unipotent radical N is an at most
two-step nilpotent Lie subgroup of N, canonically diffeomorphic to the ilov
boundary of Siegel domain realizing G/K. N is abelian exactly in the
above case (I). The Levi component L acts on u--Lie (N) and on the center
it. of u, through the adjoint action.

Proposition 4. (1) The center admits precisely (l-l)-number of
open Ad (L)-orbits (Oi_l), numbered as o:-o_.

(2) The nilpotent Ad(G)-orbits ----Ad(G)&, Oil, are all contained
in the same nilpotent class o of c,

(3) o splits as o : ]_I o__< o (disjoint union).
For any fixed i, take an element X from , and define a linear form

X* on by (X*, Z:B(Z, X)(Z e ), where B is the Killing form of .
Then, there exists a unique (up to equivalence) irreducible unitary repre-
sentation z of N for which the center Z:exp. of N is represented by
scalars" Z exp Z, ;exp /- I(X*, Z). This representation x is one-
dimensional or infinite-dimensional according as the case (I) or (II). We
put I:(C- or L-) Ind (z). Then, the equivalence class of / does not
depend on the choice of an X e because is a single Ad (L)-orbit. The
induced representation/ is called the GGGR associated with .

Our unitary GGGRs L2-I are closely related to the regular represen-
tation (, L(G)) of G as follows.

Proposition 5. One has aN0_[c].L2-/ (unitary equivalence).
So, any discrete series of G is embedded into GGGR L2-I: for some i.

We give in [7] a complete description of embeddings, or Whittaker
models, of holomorphic discrete series into C- or L-GGGRs/.

:. RGGGRs/’(c). We nw fix an element A[i] e , and put:.
Since L acts on N, it acts also on the unitary dual f of N in the canonical
way. Let H be the stabilizer of the equivalence class of in L. Then
H is reductive. We can show that is extendable to an actual (not just
projective) unitary representation $ of the semidirect product subgroup
HN acting on the same Hilbert space. For an irreducible (unitary, in
case of L-Ind) representation c of H, the induced representation /(c)
Ind((R)$) with ----c(R)l, is called the RGGGR associated with (, c).
The GGGR L-.F is decomposed into a direct integral of RGGGRs L-l(c)
(c e (H)^).

4. Finite multiplicity theorems for RGGGRs. We remark that
(L, H) has, for every i, a structure of reductive symmetric pair (on Lie
algebra level) attached to a signature of the root system of L. Thus one
can apply Theorems 2 and 3 to RGGGRs F(c). Using Fock model realiza-
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tion of (see [7]), we examine multiplicities in IM with M=M, in
detail. Consequently, we get the following

Theorem 6. The C-induced RGGGR C-F(c) is of multiplicity finite
whenever c is finite-dimensional.

There exist precisely two cases" (say) i=0, l, for which the stabilizer
H is a maximal compact subgroup of L.

Theorem 7. (1) If i=0 or l, all the unitary RGGGRs L2-F(c) coming
from F hve finite multiplicity property.

(2) If G/K is of tube type, L2-F(c) is of multiplicity finite for any i
and any finite-dimensional c.

Remark. Theorem 7(1) can not be obtained directly from Theorem 3
because dim=c in general. Nevertheless, the estimation (1.2) still holds
in the present case. So we get Theorem 7(1) from Theorem 6.

5. A multiplicity one theorem. Assume that G be linear and G/K
of tube type. By generalizing the technique in [5], [6], we can prove

Theorem 8. Let i--0 or I. Take as an extension of a unitary
character of HN trivial on H. If c is a real-valued character of the
maximal compact subgroup H of L, then the unitary RGGGR L2-F(c)
=L2-IndlN ((R))is of multiplicity free.

The author thanks Prof. T. Hirai for kind suggestions and constant
encouragement. The details f this nete will appear elsewhere.
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