38. Some Remarks on C-semigroups and Integrated Semigroups

By Naoki TANAKA and Isao MIYADERA
Department of Mathematics, Waseda University
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1987)

- 1. Introduction. Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. Let C be an injective operator in B(X) and the range R(C) be dense in X. According to Davies and Pang [3], a family $\{S(t); t \ge 0\}$ in B(X) is called C-semigroup, if
- (1.1) S(t+s)C = S(t)S(s) for $t, s \ge 0$, and S(0) = C,
- (1.2) $S(\cdot)x: [0, \infty) \to X$ is continuous for $x \in X$,
- (1.3) there are $M \ge 0$ and $a \in \mathbf{R} \equiv (-\infty, \infty)$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

We define an operator G by $Gx = \lim_{t\to 0+} (C^{-1}S(t)x - x)/t$ for $x \in D(G)$ $\equiv \{x \in R(C); \lim_{t\to 0+} (C^{-1}S(t)x - x)/t \text{ exists}\}$. It is known that G is densely defined and closable, $\lambda - \overline{G}$ is injective for $\lambda > a$ and

(1.4)
$$(\lambda - \overline{G}) \int_0^\infty e^{-\lambda t} S(t) x \, dt = Cx \text{ for } x \in X \text{ and } \lambda > a.$$

(See [3], [4].) The closure \overline{G} is called the C-c.i.g. of $\{S(t); t \ge 0\}$.

Let n be a positive integer. A family $\{U(t); t \ge 0\}$ in B(X) is called n-times integrated semigroup (see [2]), if

(1.5) $U(\cdot)x:[0, \infty)\to X$ is continuous for $x\in X$,

$$(1.6) \quad U(t)U(s)x = \frac{1}{(n-1)!} \left(\int_{t}^{s+t} (s+t-r)^{n-1} U(r) x dr - \int_{0}^{s} (s+t-r)^{n-1} U(r) x dr \right)$$

for $x \in X$ and s, $t \ge 0$, and U(0) = 0,

- (1.7) U(t)x=0 for all t>0 implies x=0,
- (1.8) there are $M \ge 0$ and $\omega \in \mathbb{R}$ such that $||U(t)|| \le Me^{\omega t}$ for $t \ge 0$.

For convenience we call a C_0 -semigroup also 0-times integrated semigroup.

It is known [2] that if $\{U(t); t \ge 0\}$ is an *n*-times integrated semigroup, then there exists a unique closed linear operator A such that $(\omega, \infty) \subset \rho(A)$ (the resolvent set of A) and

(1.9)
$$R(\lambda; A)x(\equiv (\lambda - A)^{-1}x) = \int_0^\infty \lambda^n e^{-\lambda t} U(t)x dt \text{ for } x \in X \text{ and } \lambda > \omega.$$

The operator A is called the generator of $\{U(t); t \ge 0\}$.

The purpose of this paper is to prove the following theorems.

Theorem 1. Let A be a densely defined closed linear operator in X with $\rho(A) \neq \emptyset$. Let $c \in \rho(A)$ and $n \geq 0$ be an integer. The following (i)-(iii) are equivalent:

- (i) A is the generator of an n-times integrated semigroup $\{U(t); t>0\}$.
- (ii) A is the C-c.i.g. of a C-semigroup $\{S(t); t \geq 0\}$ with $C = R(c; A)^n$.

(iii) There exist $M \ge 0$ and $a \in \mathbf{R}$ such that $(a, \infty) \subset \rho(A)$ and $\|R(\lambda; A)^m R(c; A)^n\| \le M/(\lambda - a)^m$ for $m \ge 1$ and $\lambda > a$.

In this case, we have

$$(1.10) \quad U(t)x = (c-A)^n \int_0^t \int_0^{t_1} \cdots \int_0^{t_{n-1}} S(t_n)x \, dt_n \cdots dt_2 dt_1 \text{ for } x \in X \text{ and } t \geq 0.$$

As a direct consequence of Theorem 1 we have

Theorem 2 ([1]). Let E be an ordered Banach space whose positive cone is generating and normal. If A is a densely defined closed linear operator in E such that $(\omega, \infty) \subset \rho(A)$ for some $\omega \in \mathbf{R}$ and $R(\lambda; A) \geq 0$ for $\lambda > \omega$ (i.e., A is resolvent positive), then A is the generator of a once integrated semigroup $\{U(t); t \geq 0\}$ satisfying $0 \leq U(s) \leq U(t)$ for $0 \leq s \leq t$.

Remarks. 1) The case n=0 in Theorem 1 is the Hille-Yosida theorem. 2) A in Theorem 1 (ii) coincides with the generator of $\{S(t): t \ge 0\}$ in the sense of [3]. 3) If $\sup_{x\ne 0, x\in R(C)} ||(c-A)^n S(t)x||/||x||$ is bounded on $[\varepsilon, 1/\varepsilon]$ for $\varepsilon\in(0,1)$, then $\{(c-A)^n S(t): t\ge 0\}$ becomes a semigroup (see [5, Theorem 2.2]). So, roughly speaking, (1.10) means that U(t) may be represented as n-times integral of the semigroup $(c-A)^n S(t), t\ge 0$. 4) Our proof of Theorem 2 seems to be simpler than the method in [1]. 5) In Theorem 2, it is shown that $R(\lambda; A) = \int_0^\infty e^{-\lambda t} dS(t) = \int_0^\infty \lambda e^{-\lambda t} S(t) dt$ for $\lambda > s(A) \equiv \inf\{\omega \in R; (\omega, \infty) \subset \rho(A) \text{ and } R(\lambda; A) \ge 0 \text{ for } \lambda > \omega\}$ (see [1, Theorem 4.1]).

2. Proof of Theorems. We start with the following

Lemma. Let A be the C-c.i.g. of a C-semigroup $\{S(t); t \geq 0\}$ with C = $R(c; A)^n$, where $c \in \rho(A)$ and n is a positive integer, and let $||S(t)|| \leq Me^{at}$ for $t \geq 0$, where $M \geq 0$ and a > 0 are constants. Define $V_k(t)$, $k \geq 0$, by $V_0(t) = S(t)$ and $V_k(t)x = \int_0^t \cdots \int_0^{t_{k-1}} S(t_k)x dt_k \cdots dt_1$ for $x \in X$ and $t \geq 0$.

Then for $k=1, 2, \dots, n$, we have

- (2.1) $V_k(t)x \in D(A^k)$ and $\int_0^t (c-A)^{k-1}V_{k-1}(s)xds \in D(A)$ for $x \in X$ and $t \ge 0$,
- (2.2) $(c-A)^k V_k(t) \in B(X)$ and $||(c-A)^k V_k(t)|| \leq M_k e^{at}$ for $t \geq 0$, where $M_k \geq 0$ is a constant,
- (2.3) $(c-A)^k V_k(\cdot)x: [0, \infty) \to X$ is continuous for $x \in X$,
- $\begin{array}{ll} (2.4) & (c-A)^k V_k(t) = c(c-A)^{k-1} V_k(t) (c-A)^{k-1} V_{k-1}(t) + (t^{k-1}/(k-1)!) \\ \times (c-A)^{k-1} C \ for \ t \ge 0. \end{array}$

Proof. By (2.1) in [6]

(2.5) $\int_0^t S(s)xds \in D(A)$ and $S(t)x-Cx=A\int_0^t S(s)xds$ for $x \in X$ and $t \ge 0$, and hence (2.1)–(2.4) hold for k=1. The conclusion follows from induction with respect to k.

Proof of Theorem 1. By virtue of [6, Theorem 2.1], (iii) implies (ii). To show that (ii) implies (i), let A be the C-c.i.g. of a C-semigroup $\{S(t); t \ge 0\}$ with $C = R(c; A)^n$ and $||S(t)|| \le Me^{at}$ for $t \ge 0$, where a > 0. Define U(t), $t \ge 0$, by $U(t)x = (c - A)^n V_n(t)x$ for $x \in X$. By Lemma, $U(t) \in B(X)$ for $t \ge 0$ and $\{U(t); t \ge 0\}$ satisfies (1.5), (1.7) and (1.8). Since

$$\int_{0}^{\infty} \lambda^{k} e^{-\lambda t} (c-A)^{k-1} V_{k}(t) x dt = \int_{0}^{\infty} \lambda^{k-1} e^{-\lambda t} (c-A)^{k-1} V_{k-1}(t) x dt,$$

we see from (2.4) that

$$\begin{split} &\int_{0}^{\infty} \lambda^{k} e^{-\lambda t} (c-A)^{k} V_{k}(t) x dt = (c-\lambda) \int_{0}^{\infty} \lambda^{k-1} e^{-\lambda t} (c-A)^{k-1} V_{k-1}(t) x dt + (c-A)^{k-1} C x, \\ &\text{i.e., } \int_{0}^{\infty} \lambda^{k} e^{-\lambda t} (c-A)^{k} V_{k}(t) x dt / (c-\lambda)^{k} \\ &= \int_{0}^{\infty} \lambda^{k-1} e^{-\lambda t} (c-A)^{k-1} V_{k-1}(t) x dt / (c-\lambda)^{k-1} + (c-A)^{k-1} C x / (c-\lambda)^{k} \end{split}$$

for $x \in X$, $1 \le k \le n$ and $\lambda > \alpha$. This implies that

$$\int_{0}^{\infty} \lambda^{n} e^{-\lambda t} U(t) x dt = \int_{0}^{\infty} \lambda^{n} e^{-\lambda t} (c - A)^{n} V_{n}(t) x dt = (c - \lambda)^{n} \int_{0}^{\infty} e^{-\lambda t} S(t) x dt + \sum_{k=0}^{n-1} (c - \lambda)^{k} R(c; A)^{k+1} x.$$

Hence

$$(\lambda - A) \int_{0}^{\infty} \lambda^{n} e^{-\lambda t} U(t) x dt = (c - \lambda)^{n} (\lambda - A) \int_{0}^{\infty} e^{-\lambda t} S(t) x dt + \sum_{k=0}^{n-1} ((c - \lambda)^{k} R(c; A)^{k} x - (c - \lambda)^{k+1} R(c; A)^{k+1} x) = x$$

for $x \in X$ and $\lambda > a$, because $(\lambda - A) \int_0^\infty e^{-\lambda t} S(t) x dt = Cx = R(c; A)^n x$ by (1.4).

Consequently, $\lambda \in \rho(A)$ and $\int_0^\infty \lambda^n e^{-\lambda t} U(t) x dt = R(\lambda; A) x$ for $x \in X$ and $\lambda > a$. It follows from [2, Theorem 3.1] that U(t), $t \ge 0$, satisfy (1.6). So that $\{U(t); t \ge 0\}$ is an n-times integrated semigroup and its generator is A.

Finally, to prove that (i) implies (iii) let A be the generator of an n-times integrated semigroup $\{U(t)\,;\,\,t\geq 0\}$ and $\|U(t)\|\leq Ke^{\omega t}$ for $t\geq 0$. Then, by the definition of the generator, $(\omega,\,\infty)\subset\rho(A)$ and $R(\lambda\,;\,A)x=\int_0^\infty\lambda^ne^{-\lambda t}U(t)xdt$ for $x\in X$ and $\lambda>\omega$. So, $(\lambda-A)\int_0^\infty e^{-\lambda t}(\sum_{k=0}^{n-1}(t^k/k!)\,A^kx+U(t)A^nx)dt=(\lambda-A)\sum_{k=0}^{n-1}\lambda^{-(k+1)}A^kx+\lambda^{-n}A^nx=x$ for $x\in D(A^n)$ and $\lambda>|\omega|$ and hence $R(\lambda\,;\,A)x=\int_0^\infty e^{-\lambda t}(\sum_{k=0}^{n-1}(t^k/k!)\,A^kx+U(t)A^nx)\,dt$ for $x\in D(A^n)$ and $\lambda>|\omega|$. Differentiating m-1 times with respect to λ ,

$$(-1)^{m-1}(m-1)! \ R(\lambda; A)^m x = \int_0^\infty (-t)^{m-1} e^{-\lambda t} \left(\sum_{k=0}^{n-1} (t^k/k!) A^k x + U(t) A^n x \right) dt$$
for $x \in D(A^n)$ and $\lambda > |\omega|$. Hence
$$(m-1)! \| R(\lambda; A)^m R(c; A)^n x \|$$

$$\leq \int_{0}^{\infty} t^{m-1} e^{-\lambda t} (\sum_{k=0}^{n-1} (t^{k}/k!) \|A^{k}R(c;A)^{n}\| + Ke^{\omega t} \|A^{n}R(c;A)^{n}\|) \|x\| dt \\ \leq (m-1)! M \|x\|/(\lambda-a)^{m}$$

for $x \in X$, $\lambda > a$ and $m \ge 1$, where $a = \max\{1, |\omega|\}$ and $M = 2 \max\{\|A^k R(c; A)^n\|, k = 0, 1, \dots, n-1; K\|A^n R(c; A)^n\|\}$. Q.E.D.

Proof of Theorem 2. We may assume that s(A) < 0 by replacing A by A-w. (See [1, Proof of Theorem 4.1].) By [1, Lemma 2.1] (2.6) $R(0;A) = R(\lambda;A) + \lambda R(\lambda;A)^2 + \cdots + \lambda^{m-1}R(\lambda;A)^m + \lambda^m R(\lambda;A)^m R(0;A)$ for $m \ge 1$ and $\lambda \ge 0$, and

$$\sup \{\|\lambda^m R(\lambda; A)^m R(0; A)\|; m \ge 1, \lambda \ge 0\} < +\infty.$$

By virtue of Theorem 1, A is the generator of a once integrated semigroup $\{U(t)\,;\,t\geq 0\}$ and the C-c.i.g. of a $C\text{-semigroup}\,\{S(t)\,;\,t\geq 0\}$ with $C=R(0\,;\,A)$, and by (1.10) and (2.5) $U(t)x=-A\int_0^t S(s)xds=R(0\,;A)x-S(t)x$ for $x\in E$ and $t\geq 0$. It follows from (2.6) that for $0\leq s\leq t$ and $\lambda>0$, $(\lambda R(\lambda\,;\,A))^{\lceil \lambda s\rceil}R(0\,;\,A)-(\lambda R(\lambda\,;\,A))^{\lceil \lambda s\rceil}R(0\,;\,A)=(\lambda R(\lambda\,;\,A))^{\lceil \lambda s\rceil}\sum_{k=0}^{\lceil \lambda t\rceil-\lceil \lambda s\rceil-1}\lambda^kR(\lambda\,;\,A)^{k+1}$ if $\lceil \lambda t\rceil>\lceil \lambda s\rceil$, q=1, which yields $(\lambda R(\lambda\,;\,A))^{\lceil \lambda s\rceil}R(0\,;\,A)\geq (\lambda R(\lambda\,;\,A))^{\lceil \lambda s\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$, where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ where $\lceil q=1$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A))^{\lceil \lambda t\rceil}R(0\,;\,A)$ denotes the Gaussian bracket. Since $\lim_{\lambda\to\infty}(\lambda R(\lambda\,;\,A)$ denotes the Gaus

Q.E.D.

References

- [1] W. Arendt: Resolvent positive operator. Proc. London Math. Soc. (to appear).
- [2] —: Vector valued Laplace transforms and Cauchy problems (preprint 1986).
- [3] E. B. Davies and M. M. H. Pang: The Cauchy problem and a generalization of the Hille-Yosida theorem (preprint 1986).
- [4] I. Miyadera: On the generators of exponentially bounded C-semigroups. Proc. Japan Acad., 62A, 239-242 (1986).
- [5] I. Miyadera and N. Tanaka: Exponentially bounded C-semigroups and generation of semigroups (preprint 1987).
- [6] N. Tanaka: On the exponentially bounded C-semigroups. Tokyo J. Math. (to appear).