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1. Introduction. Let X be a Banach space and let B(X) be the set
of all bounded linear operator’s from X into itself. Let C be an injective
operator in B(X) and the range R(C) be dense in X. According to Davies
and Pang [3], a family {S(t) t>_0} in B(X) is called C-semigroup, if
(1.1) S(t+s)C=S(t)S(s) for t, s>_0, and S(0)-C,
(1.2) S(.)x: [0, oo)-X is continuous for x e X,
(1.3) there are M>_0 and a e R--(-- oo, oo) such that IIS(t)ll<_Meat for t

We define an operator G by Gx--limto/(C-S(t)x-x)/t for x e D(G)
{x e R(C); limto/(C-S(t)x-x)/t exists}. It is known that G is densely
defined and closable, -G is injective fora and

(1.4) (2- G) .[ e-tS(t)x dt- Cx for x e X and 2> a.

(See [3], [4].) The closure G is called the C-c.i.g. of {S(t) t_>0}.
Let n be a positive integer. A family {U(t) t >_0} in B(X) is called n-

times integrated semigroup (see [2]), if

(1.5) U(.)x" [0, o)-+X is continuous for x e X,

(I: I: )1 (s+t--r)-U(r)xdr- (s+t r)-U(r)xdr(1.6) U(t)U(s)x--
(n- 1)

for x e X and s, t>_0, and U(0)=0,
(1.7) U(t)x=O for all t>0 implies x=0,
(1.8) there are M>_0 and e R such that U(t)l] <_Me for t>_0.

For convenience we call a C0-semigroup also O-times int,egrated semigroup.
It is known [2] that if {U(t) t>_0} is an n-times integrated semigroup,

then there exists a unique closed linear operator A such that (w, oo)cp(A)
(the resolvent set of A) and

A)x(----(2--A)-’x)- ,e-U(t)x dt or x e X and(1.9) R(;

The operator A is called the generator o {U(t) t>_0}.
The purpose of this paper is to prove the 2ollowing theorems.
Theorem 1. Let A be a densely defined closed linear operator in X

with p (A)=/=. Let c e p(A) and n>_O be an integer. The following (i)-(iii)
are equivalent"

( i ) A is the generator of an n-times integrated semigroup {U(t) t >_0}.
(ii) A is the C-c.i.g. of a C-semigroup {S(t) t>_0} with C=R(c; A).
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(iii) There exist M>_O and a e R such that (a, o)c(A) and
IIR( A)R(c; A)II<M/(2-a) for m>l and

In this case, we have

(1.10) U(t)x--(c--A)[t[ .[-’S(t)xdt..-- .dtdt for x e X and t>O.
j0 j0 jo

As a direct consequence of Theorem 1 we have
Theorem 2 ([1]). Le E be an ordered Banach space whose positive

cone is generating and normal. If A is a densely defined closed linear
operator in E such that (o, oo)p(A) for some toe R and R(; A)>0 for
(o (i.e., A is resolvent positive), then A is the generator of a once inte-
grated semigroup {U(t) t>0} satisfying O< U(s)<_U(t) for O<s<__t.

Remarks. 1) The case n--0 in Theorem I is the Hille-Yosida theorem.
2) A in Theorem 1 (ii) coincides with the generator of {S(t); t0} in the
sense of [3]. 3) If supo,e,(c)l](c--A)S(t)xll/l[x]l is bounded on [, 1/] for
e (0, 1), then {(c- A)S(t) t>0} becomes a semigroup (see [5, Theorem 2.2]).

So, roughly speaking, (1.10) means that U(t) may be represented as n-times
integral of the semigroup (c-A)S(t), t>O. 4) Our proof of Theorem 2
seems to be simpler than the method in [1]. 5) In Theorem 2, it is shown

that R(; A)=I"; e-dS(t)=[; e-S(t)dt for > s(A)_ inf {oe R;(, c)

cp(A) and R(; A)>_0 for >o} (see [1, Theorem 4.1]).
2. Proof of Theorems. We start with the following
Lemma. Let A be the C-c.i.g. of a C-semigroup {S(t); t>0} with C

--R(c; A), where c e p(A) and n is a positive integer, and let
for t>_O, where M>O and aO are constants. Define V(t), k>>_O, by Vo(t)

S(t) d VAt)x= S(t)dt. dt o e Xd t>O.

The for k l, , ..., , we

V(t)x e D(A) and [*o(c--A)-’V_(s)xds e D(A) for x e X and t>O,(2.1)

(2.2) (c-A)V(t)e B(X) and I[(c--A)V(t)ll<_Me* for t>0, where M>_O
is a constant,
(2.3) (c--A)V( .)x" [0, co)-+X is continuous for x e X,
(2.4) (c--A)V(t)=c(c--A)-’V(t)-(c--A)- V_(t)+(t-’/(k--1) !)

(c-- A)-C for t>0.
Proof. By (2.1) in [6]

(2.5) :S(s)xds e D(A) and S(t)x-Cx=A:S(s)xds or x e X and t_O,

and hence (2.1)-(2.4) hold or k= 1. The conclusion follows from induction
with respect to k. Q.E.D.

Proof of Theorem 1. By virtue of [6, Theorem 2.1], (iii) implies (ii).
To show that (ii)implies (i), let A be the C-c.i.g. of a C-semigroup {S(t);
t0} with C--R(c; A) and []S(t)ll_Me or t_0, where a0. Define
U(t), tO, by U(t)x-- (c-A)V(t)x for x e X. By Lemma, U(t) e B(X) for

t0 and {U(t); t_0} satisfies (1.5), (1.7) and (1.8). Since
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:/e-t(c-A)-V(t)xdt S-e-(c-A)-V_(t)xdt,

we see from (2.4) that:e-(c--A)V(t)xdt=(c--):-e-(c A)-V
_
(t)xdt+(c A)-Cx,

i.e., ;e-(c-A)V(t)xdt/(c-)
.[-e-(c-A)-’V_(t)xdt/ (c-)-+(c-A)-Cx/(c-)

for x e X, 1kn and 2 a. This implies that

- A),z.+, (e )R(e
Hence

(_ A)fne-tU(t)xdt_ (c)n(__ A)fe-tS(t)xdt
n-1 A)kx--(c ,D/R(c A)/x) x+:0 ((c )R(c

for x e X and >a, because (-A) .[ e-S(t)xdt=Cx=R(c; A)x by (1.4).

Consequently, e p(A) and.[ e-tU(t)xdt=R( A)x for x e X and

It follows from [2, Theorem 3.1] that U(t), tO, satisfy (1.6). So that {U(t)
t0} is an n-times integrated semigroup and its generator is A.

Finally, to prove that (i) implies (iii) let A be the generator of an
n-times integrated semigroup {U(t) t 0} and U(t)] Ke for t 0.
Then, by the definition of the generator, (w, )cp(A) and R(;A)x

2e-U(t)xdt for x e X and >w. So, (-A) e-(=o(t/kl)A
n- -nAnx D(A) and> andU(t)Ax)dt ( A)=o-(+)Ax+ =x for x e

hence R( A)= e-((t/)A+ U(t)A) gt for z e D(A) and

>. Differentiating m--1 imes with resee to 2,

(--)-(m-1) R(; A)z=.[(-t)-e- (:(/)Az+ U(t)Az)dt

for e D(A) and 2>. Henee
(m-1) IIR(2 A)R(c; A)xll

g(m--1) M]]x[[/(--a)
for x e X, 2a and ml, where a=max {1, [ol} and M=2 max {[[AR(c
A)[, k=0, 1, ..., n--l; K[[AR(c; A)n]}. Q.E.D.

Proof of Theorem 2. We may assume that s(A)O by replacing A by
A--w. (See [1, Proof of Theorem 4.1].) By [1, Lemma 2.1]
(2.6) R(0 A)=R(2 A)+R( n)+... +-R( A)+2R(2 A)R(O A)
for ml and 0, and

sup{l[R(2 A)R(0 A)]; ml, 0}+.
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By virtue of Theorem 1, A is the gnerator of a once integrated semigroup
{U(t) t_0} and the C-c.i.g. of a C-semigroup (S(t) _0} with C-R(O A),

and by (1.10) and (2.5) U(t)x= -A.l’iS(s)xds=R(O ;A)x-S(t)x for x e E and

t_0. It follows from (2.6) that for 0s_$ and 0, (R(; A))R(O;A)
(,R( A))R(O A) (R( A))(R(O A) (,R( A))-R(O A))

(2R(2 A))[s2=0-[s]-12R(2 A)TM if [2t]>[2s], =0 if [2t]=[s], which yields
(2R(2; A))’R(0; A)(2R(2; A))ceR(0; A), where denotes the Gaussian
bracket. Since lim_(2R(2 A))R(O A)x= S(t)x for x e E and t

_
0 (see

[6, Theorem 1.3]), we have that S(s)>S(t) for 0_s_t. Combining this
with U(t)=R(0 A)--S(t), we see that 0= U(0)_ U(s)_U(t) for O_s_t.

Q.E.D.
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