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String theories (cf. Green-Gross [5]) seem to suggest much to prime
number theories. We supplement the previous report [7] from the view
point of string theories. In §1 we notice an application of string theories,
and we remark the “multiple string case” in §2. The contents of this
report were presented in a symposium entitled “Superstring Theories” at
the University of Tokyo in September 1986. Some details will appear
elsewhere.

§1. An application of string theories. Let M be a compact Riemann
surface of genus 2, z, the period matrix belonging to the Siegel upper half
space of genus 2, and Z,(s) the original Selberg zeta function. Let X, be
the Siegel cusp form of genus 2 and weight 10 uniquely determined up to
constant : Xy==¢ []m:oven I%. Then:

Theorem 1. Z3,(1)*Z,(2)'=C |X(zx) [ (det Im z,)" up to an absolute
constant C independent of M.

This follows from the recent progress of string theories. First,
D’Hoker-Phong [4] (cf. [1]) showed that :

Zy(1)*Z y(2)"'=C\(det 4,)"(det 457)7,
where 4,, is the usual Laplacian on M and 4%* is a Laplacian acting on
certain tensors. Secondly, Belavin-Knizhnik [3] (cf. [2], [6], [10]) showed
that :
[Xio(za) [ (det Im 7)) = C,(det 4,)"(det 45) .
These two results are proved by quite different methods, and Theorem 1
seems to be astonishing.

We notice another suggestion from string theories, which is conjec-

turally schematized as follows :

Particles Primes
/ UST / SP
G GUT S LP
UT, NCCFT
W EM S A HL HW

The left tree indicates the unification of the four forces: weak, electro-
magnetic, strong, and gravitational. The right tree indicates the unifica-
tion of the four zeta functions: Artin, Hecke-Langlands, Hasse-Weil, and
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Selberg. We omit the detailed comparison except for emphasizing two
points: (1) Selberg zeta functions treat closed strings (real one dimen-
sional loops) as “primes” in contrast with other three zeta functions where
“primes” are zero dimensional closed points, and (2) gauge groups cor-
respond to (extended) Galois groups. For a background we refer to [9].

§2. A multiple zeta function. Let X :R"—Aut (M) be a group homo-
morphism given by t—X, from the additive group of r-copies of real num-
bers to the automorphism group of a set M. Such an X is called an
abstract dynamical system. (It is usual to suppose suitable topological or
analytical conditions on X.) We define the zeta function &(s, X) of X as
follows. We say that an orbit p=R"-m for an m ¢ M is “periodic” if the
isotropy subgroup (stabilizer) R;=R;, is isomorphic to Z7, where Z denotes
the additive group of integers. We denote by Per (X) the set of all periodic
orbits, and for each p € Per (X) we define N(p)=exp (vol (R"/R})) where vol
denotes the volume. Then we put

(s, X)= 1 A—N®)™)"
pEPer(X)

where s is a variable complex number. This definition was noted in
[7, Remark 1]. When r=1, this zeta function coincides with the zeta
function of Selberg-Smale-Ruelle, and there are vast results in this case.
On the contrary, it seems that there is no paper treating zeta functions
for r=2. We investigate the latter case in a particularly simple “com-
pletely reducible” situation. (On the level of zeta functions of analytic
rings of [7], “reducible” means nothing but “decomposable into a tensor
product”.)

We say that an abstract dynamical system X : R"— Aut (M) is completely
reducible if there are dynamical systems X*: R—Aut (M,) for i=1,-.-,7
such that M=M,X--- XM, and X,(m,, - --,m,)=(X}(m), ---, X} (m,)) for
my,---,myeMand t=(, ---,t,)e R". We call X the product of X*, ---,
X". In this case Per (X) is identified with Per (X*) X - - - X Per (X7) (“mul-
tiple prime strings”) and we have N(p)=exp (log N(p,)- - -log N(p,)) for
p=(py, - -+, p,) € Per (X). Thus the study of {(s, X) is reformulated as fol-
lows. Let P, ---, P, be prime sets in the sense of [8] with norm functions
N,:P,—-R. Define N:P,X---XP,—~R by N, ---,p,)=exp (log N,(p,)---
log N.(p,)) for p,e P,. Then P,X---XP, is a prime set again, and our
object is the study of the multiple Euler product

C(S’Plx e XP.,):( n ) (1_N(p1’ ot "pr)—s)_l’

Pt p,
which may be called a multiple zeta function. (We notice that there exist

various “multiple zeta functions” also.) We make a trivial remark that
every prime set P is obtainable from an abstract dynamical system X : R
—Aut (M) via P="Per (X) so &(s, P)=¢(s, X) : for example, it is sufficient to
take M =P X (R/Z) and put
X.(p, x)=(p, x+t/log N(p) mod 1).
For simplicity we note the following two cases.
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Theorem 2. Let M, and M, be compact Riemann surfaces of genus
greater than 1. Let X*: R—Aut (M,) be the geodesic action, and X : R*—
Aut (M, XM, be the product dynamical system. Then {(s, X)={(s, Per (X*)
X Per (X?) is meromorphic in Re (s)>0 with the natural boundary Re (s)
=0.

Theorem 3. Let P(Z) be the prime set of rational primes. Then
¢(s, P(Z) X P(Z)) is meromorphic in Re(8)>0 with the natural boundary
Re (s)=0.

The method of the proof of Theorems 2 and 3 is a simple modification
of [8].

Looking the “largest” pole of (s, X), we have an asymptotic distribu-
tion of multiple primes (p, - - -, »,). For example (s, P(Z) X P(Z)) is non-
zero holomorphic in Re (s)=1/log 2 except for the double pole at s=1/log 2,

80 we have
17105 2

¥ {(py, p); P P(Z), N(p,, 1oz)§t}~210g21

ogt
as t—oo. Similarly, let M be a compact Riemann surface of genus greater
than 1 with the geodesic action X : R—Aut (M), then (s, Per (X) X Per (X))
is non-zero holomorphic in Re (s)=1/I(M) except for the double pole at
s=1/U(M),
I(M)=min {log N(p); p € Per (X)}
being the minimal length of a closed geodesic on M, and we have
1/1(M

# {1, ) 5 p; € Per (X), N(py, p) <t} ~2-UM) tl(;; t)

Remark. For various applications analytic dynamical systems X : R
—Aut (M) are important. We obtain a natural analytic dynamical system
of the above form for M =7I"\G/K where G is a Lie group of rank », K is
a maximal compact subgroup of G, and I is a co-compact discrete subgroup
of G. For example, the situation of Theorem 2 is obtained from G=

SL(2, R)XSL(2,R). More generally we must study quantum dynamical
systems as in [7].

as t—oo.
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