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83. Boundedness of Closed Linear Operator T
satisfying R(T)cD(T)
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1. Let T be a densely defined closed linear operator in a Banach space
E satisfying that R(T)CD(T). We prove that if T satisfies one of the
following conditions :

@) | T*|||z]|=||Tx|* for every e D(T), or

(2) T has the non-empty resolvent set,
then it follows that 7 is bounded.

Let T : E—H Ve a densely defined closed linear operator and T* : H—E"’
be the adjoint operator, where H is a Hilbert space. It is shown that if
R(TYc D(T*), then T is bounded.

2. Let E be a Banach space and 7 : E—FE be a densely defined closed
linear operator with the domain D(T) and the range R(T). The following
problem was posed by Ota [3].

Problem. Suppose that R(T)C D(T), then is T bounded:?

In general, the answer is negative as shown by Ota [3]. Ota [3] proved
that if T is dissipative, then the answer is positive. In this note we investi-
gate other conditions which imply the positive answers for this problem.

After Furuta [1], we say the linear operator T : E—E paranormal if
R(T)c D(T) and if it holds that | T%z||||z||=||Tx|}* for every x € D(T).

Theorem 1. Let T be a densely defined closed paranormal operator
in a Banach space E. Then T is bounded.

Proof. Since T is closed, (D(T),| |;) is a Banach space, where |z|,
=|z||+]||Tx|, xe D(T). By R(T)c D(T), the operator T¢: (D(T),| |r)—FE is
well defined. By the closedness of T, it follows that 7% is also closed on
(D(T),| |r), hence bounded. Thus there exists C>0 such that || T°z||<C(| x|
+||Tz|) for every xe D(T). By the paranormality, we have for every
x e D(T) with ||z||=1, | Tz’ <|| T*2||<CQA+||Tz|). That is, | Tz|*—C|| Tx|
—C<0. This implies that

||Tx||§ﬂ%“r_4£<+oo,

which implies the assertion.

Let T be a linear operator in a Banach space E. The resolvent set
o(T) of T is the set of all complex numbers 2 such that the range R(AI—T)
is dense in E and that A/—7T has the continuous inverse (A/—7)"! on
D(QI—T)*)=R(AI—T), see Yosida [4], Ch. VIII. It is well known that if
T is bounded, then p(T)+#@. The converse is valid for a densely defined
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closed linear operator satisfying R(T)C D(T).

Theorem 2. Let T be a densely defined closed linear operator in a
Banach space E satisfying that R(T)C D(T). Suppose that p(T)+ o, then
T is bounded.

Proof. Take 1€ p(T). Since AI—T has the continuous inverse, there
exists C>0 such that ||(AI — T ||=C| x| for every x € DAI—T)=D(T). By
the closedness of T, it follows that the range R(AI—T) is closed. In fact,
let AUI—T)x,—#, x,€ D(T) and ze E. Then by this inequality, {x,} is a
Cauchy sequence in E, hence z,—x for some x ¢ E. Thus we have z,—x
and Tx,—Ax—z. By the closedness of T, we have x € D(T) and Tx=2ix—z,
which shows the assertion. Since 1€ o(T), R(AI—T) is dense in E, so
R(AI—T)=E. Consequently it follows that E=R(I—T)CD(T), that is,
D(T)=E. Thus T is bounded.

Theorem 3. Let T be a densely defined closed linear operator in a
Banach space E satisfying that R(TYCD(T). Suppose that there exists
N>0 such that for every n>N, there exists K,>0 such that ||(nl —T)x||
=K, ||x|l, xe D(T). Then T is bounded.

Proof. We shall show that D(T)=FE. By R(T)cD(T), the operator
T: (D), |D—>DM,| | is well defined and bounded as easily seen, |z|,
=||z||+||Tx|| for x € D(T). There exists C>0 such that |Tx|,<C|z|, for
every x e D(T). Let n be n>N and n>C. Then it follows that nI—T has
the bounded inverse (I —T)~* which is everywhere defined on (D(T),| |r)-
Thus we have D(nl—T))=RnI—-T)=D(T). Since |(n]—-T)z|=K, | x|,
x e D(T), by the manner same to Theorem 2, we can see that the range
R(nI—T) is closed. Consequently it follows that E=D(T)=RnI—T)
= D(T), which proves the assertion.

3. Let H be a Hilbert space. Ota [3] proved that if T is a densely
defined closed linear operator in H satisfying that R(T)c D(T*), then T is
bounded. We shall prove an analogous result for an operator T': E—H,
where E is a Banach space and H is a Hilbert space.

Let T : E—H be a densely defined linear operator. The adjoint T* of
T is defined by D(T*)={y € H ; D(T) 5> x—(Tx, y) is continuous} and (T*y)(x)
=Tz, y) for x ¢ D(T) and y e D(T*). The adjoint T* is an operator in H
into E’.

Theorem 4. Let E be a Banach space, H be a Hilbert space and T :
E—H be a densely defined closed linear operator. If R(T)CD(T*), then
T is bounded.

Proof. Since T is closed, (D(T),| |;) is a Banach space, where ||,
=|2|lz+]Tx|z. By R(T)CD(T*), the operator T*T: (D(T),| |;)—E’ is
well defined. Remarking that 7* is closed since D(T) is dense, we can see
that T*T is also closed on (D(T),| |;), hence bounded. There exists C>>0
such that ||T*Txz|;=C(|x||z+|Tx||z) for every xze D(T). For every
x e D(T) with |z|z=1, it follows that || T*Tx|; =|(T*Tx)(x)|=|(Tx, Tx)|
=||Tz|% and hence | Tz|,}<C1+| Tx|z). Consequently we have for every
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x e D(T) with ||z||z=1,
||T90||H§C-+‘_/%g<+oo,

which shows the boundedness of T'.

Theorem 5. Let E be a Banach space, H be a Hilbert space and T :
H—FE be a densely defined closable linear operator. If R(T")CD(T), then
T is bounded, where T’ : E'— H 1is the conjugate operator of T given by
D(T={¢eE; D(T)>x— (T, & is continuous} and (I"&)(x)=<{Tx, &) for
z e D(T) and & € D(T").

Proof. Remark that R(T")=R(T")CD(T)CD(T), where T is the clo-
sure of T. By the manner same to Theorem 4, it follows that T’ is con-
tinuous on D(T’). Remark that the density of D(T’) in E’ is not assumed
in advance. But by Goldberg [2], Corollary II. 4.8, it follows that D(T)
=H and T is bounded since T is closed.

Corollary. Let T : H—H be a densely defined closable linear operator
n a Hilbert space H. If T satisfies that R(T*)C D(T), then T is bounded.
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