82. On Kakeya's Maximal Function

By Satoru IGARI
Mathematical Institute, Tôhoku University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1986)

Let \mathcal{R} be a family of non-empty bounded open sets in the d-dimensional Euclidean space \mathbf{R}^d . For a locally integrable function f on \mathbf{R}^d the maximal operator $M_{\mathcal{R}}$ with respect to \mathcal{R} is defined by

$$M_{\mathcal{R}}f(x) = \sup_{x \in R \in \mathcal{R}} \frac{1}{|R|} \int_{R} |f| \, dy.$$

The maximal operators of this description are used effectively to estimate some operators arising, especially, in harmonic analysis. When \mathcal{R} is the family of all open balls in \mathbf{R}^a , $M_{\mathcal{R}}f$ is Hardy-Littlewood maximal function. For given real numbers N>2 and a>0 let \mathcal{R} be the family of rectangles in \mathbf{R}^a with dimension $a\times\cdots\times a\times aN$, but with arbitrary direction. When d=2, by Cordoba's theorem (cf., e.g., [1])

$$||M_{\mathcal{R}}f||_2 \le C (\log N)^{1/2} ||f||_2$$

for $f \in L^2(\mathbb{R}^2)$, where C is a constant independent of a, N and f, and $||f||_2 = \left(\int_{\mathbb{R}^2} |f|^2 dx\right)^{1/2}$.

In this note we shall consider the higher dimensional case of Cordoba's inequality for functions of product type. We use the same notation C for a constant independent of a and N. It may be different in each occasion.

Theorem. Let $d \ge 3$. There exists a constant C such that

$$||M_{\mathcal{R}}f||_{d} \le C (\log N)^{3/2} ||f||_{d}$$

for all f in $L^d(\mathbf{R}^d)$ of the form $f(x_1, \dots, x_d) = f_1(x_1) \dots f_d(x_d)$.

Proof. We may assume a=1. Decompose R^d into cubes Q_p which have side length 1 and centers at lattice points p. We choose rectangles R_p so that each R_p has dimension $2\sqrt{d} \times \cdots \times 2\sqrt{d} \times 2N$ and center at p, and

$$M_{\mathcal{R}}f(x) \le (2\sqrt{d})^d \sum_{p} \frac{1}{|R_p|} \int_{R_p} |f| \, dy \cdot \chi_{Q_p}(x),$$
 (1)

where χ_E denotes the characteristic function of a set E. Let Tf(x) be the sum on the right hand side of (1). Fix $1 \le i < j \le d$. For $x = (x_1, \dots, x_d)$ denote $\overline{x} = (x_i, x_j)$ and $\overline{x} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{j-1}, x_{j+1}, \dots, x_d)$. We shall prove that

$$\int_{\mathbb{R}^{2}} (\sup_{\bar{x}} Tf)^{2} d\bar{x} \leq C (\log N)^{3} \int_{\mathbb{R}^{2}} (\sup_{\bar{x}} |f|)^{2} d\bar{x}.$$
 (2)

Then by an interpolation theorem for operators on mixed normed spaces given in the previous paper [2] we get our theorem for functions f of product type.

To show (2) we consider the dual operator $T^*a(x) = \sum_p a_p |R_p|^{-1} \chi_{R_p}(x)$ for sequences $a = \{a_p\}$ of complex numbers. We shall prove that

$$\left\{ \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}^{d-2}} |T^*a|^2 \, d\overline{\overline{x}} \right)^2 \! d\overline{x} \right\}^{1/2} \leq C \, (\log N)^{3/2} \{ \sum_{\overline{p}} \, (\sum_{\overline{p}} |a_p|)^2 \}^{1/2}. \tag{3}$$

Lemma 1. There exist rectangles S_n in \mathbb{R}^2 such that

(i) S_p has dimension $2\sqrt{d} \times M_p$ with $2 < M_p < 2N$ and center at \overline{p} , and

Proof. Fix a rectangle R_p and assume p=0. Let $B=\{|x|<2\sqrt{d}\}$. Then we can choose a unit vector u in \mathbb{R}^d so that $\mathbb{R}_v \subset B + \{ju : |j| \leq N\} = E$, Put $\rho(\bar{x}) = \int \chi_{\scriptscriptstyle E}(x) d\bar{x}$ and $S_{\scriptscriptstyle p} = \{\bar{x}: |\bar{x} - j\bar{u}| < 2\sqrt{d} \text{ for some } |j| \leq N\}.$ Then support of $\rho \subset S_p$ and $\rho(\bar{x}) \leq C/|\bar{u}|$. Therefore $\rho(\bar{x}) \leq C|R_p|/|S_p|$, from which Lemm 1 follows.

Now we introduce a function $\overline{T}^*a(\overline{x}) = \sum_p a_p |S_p|^{-1} \chi_{S_p}(\overline{x})$. Lemma 2. Let $k \ge 1$ and assume $2^k \le |S_p| < 2^{k+1}$ for all p.

$$\int_{\mathbf{R}^2} |\overline{T}^*a|^2 d\overline{x} \leq Ck \sum_{p} (\sum_{\overline{p}} |a_p|)^2.$$

Proof. Put $P_0 = \{ \overline{p} = (p_i, p_j) \in \mathbb{Z}^2 : |p_i|, |p_j| \le 2^k \}$ and $P_\mu = P_0 + 2^{k+1}\mu$ for $\mu \in \mathbb{Z}^2$. Since $|S_p \cap S_q| = 0$ if $|\overline{p} - \overline{q}| > 2^{k+1}$, we have

$$\int |\overline{T}^*a|^2 d\overline{x} \leq 2^{-2k} \sum_{\mu} \int (\sum_{p \in P_{\mu}} \sum_{\bar{p}} |a_p| \chi_{S_p}(\overline{x}))^2 d\overline{x} \\
\leq 2^{-k+1} \sum_{\mu} \sum_{p_i} \int (\sum_{p_j} \sum_{\bar{p}} |a_p| \chi_{S_p}(\overline{x}))^2 d\overline{x}, \tag{5}$$

where $(p_i, p_j) = \overline{p}$ runs over P_μ . We may assume $|S_p \cap S_q| \le C2^k/(|p_j - q_j| + 1)$ for $\overline{p} = (p_i, p_j)$, $\overline{q} = (p_i, q_j) \in P_{\mu}$ by a geometric consideration (cf. [1]). Thus the right hand side of (5) does not exceed

the right hand side of (5) does not exceed
$$C\sum_{\mu}\sum_{p_i}\sum_{p_j,q_j}(\sum_{\bar{p}}|a_p|)(\sum_{\bar{q}}|a_q|)/(|p_j-q_j|+1) \leq Ck\sum_{\mu}\sum_{p\in P_{\mu}}(\sum_{\bar{p}}|a_p|)^2,$$
 which proves Lemma 2.

Put $\overline{T}_k^*a = \sum^k a_p |S_p|^{-1} \chi_{S_p}$, where \sum^k denotes the summation over p such that $2^k \le |S_p| < 2^{k+1}$. Then, by Lemma 2, the left hand side of (3) is dominated by

$$\sum_{k=1}^{C + \log N} \left(\int |\bar{T}_k^* a|^2 \ d\bar{x} \right)^{1/2} \leq C \sum_{k=1}^{C + \log N} \sqrt{|k|} \left\{ (\sum_{\bar{p}} \sum_{\bar{p}} |a_p|)^2 \right\}^{1/2},$$

which implies (3).

References

- [1] A. Cordoba: The Kakeya maximal function and the spherical summation multipliers. Amer. J. Math., 99, 1-22 (1977).
- S. Igari: Interpolation of linear operators in Lebesgue spaces with mixed norm. Proc. Japan Acad., 62A, 46-48 (1986) (A detailed proof will appear in Tôhoku Math. J., 38, 469-490 (1986)).