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Let R be a family of non-empty bounded open sets in the d-dimen-
sional Euclidean space R?. For a locally integrable function f on R¢ the
maximal operator M4 with respect to R is defined by
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The maximal operators of this description are used effectively to estimate
some operators arising, especially, in harmonic analysis. When QR is the
family of all open balls in R?, M. f is Hardy-Littlewood maximal function.
For given real numbers N>2 and ¢>0 let R be the family of rectangles in
R? with dimension aX .- XaXxaN, but with arbitrary direction. When
d=2, by Cordoba’s theorem (cf., e.g., [1])
| Maf].<C (log N)'*| fll.
for fe L*(R?%, where C is a constant independent of a, N and f, and || f|
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In this note we shall consider the higher dimensional case of Cordoba’s
inequality for functions of product type. We use the same notation C for
a constant independent of @ and N. It may be different in each occasion.

Theorem. Let d>3. There exists a constant C such that

Mg flla<C (og NY | flla
for all f in LY(R?) of the form f(x,, - -, )= fi(%)- - - fo(®4).

Proof. We may assume a=1. Decompose R¢ into cubes @, which
have side length 1 and centers at lattice points p. We choose rectangles
R, so that each R, has dimension 2v d X --- X2+ d X2N and center at p,
and

1
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where X, denotes the characteristic function of a set E. Let Tf(x) be the
sum on the right hand side of (1). Fix 1<i<j<d. For x=(w, ---, x,)
denote Z=(x;, ;) and Z=(Ly, -« -, T4, Tsysy ***» Tjgy Lyuyy =+ +, L) We shall
prove that

Maf(@)< @2V d)* ;

[ GupTryds<caog Ny | (sup|siyds. (2)

Then by an interpolation theorem for operators on mixed normed spaces
given in the previous paper [2] we get our theorem for functions f of
product type.
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To show (2) we consider the dual operator T*a(x)=73_,a,|R,| Xz,(%)
for sequences a={a,} of complex numbers. We shall prove that

{J (I o2 | T*af d?ﬁ)zdm}lﬂsc (log NY (3" (3" |a, D). (3)
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Lemma 1. There exist rectangles S, in R* such that

(i) S, has dimension 2V d X M, with 2<M,<2N and center at P,
and

(i) [ o | T @I 4RC T 10, 1,15, (@). (4)

Proof. Fix a rectangle R, and assume p=0. Let B={z|<2v d}.
Then we can choose a unit vector » in R? so that R,CB+{ju:|j/|<N}=E,

say. Put p(o‘c)=J‘XE(x)d7c and S,={z: |z —ju|<2v/'d for some |j|< N}

Then support of pCS, and p(Z)<C/|u|. Therefore p()<C|R,|/|S,|, from
which Lemm 1 follows.

Now we introduce a function T*a(z)=3, a,|S,| Xs,(Z).

Lemma 2. Let k>1 and assume 28<|S,|<2**' for all p. Then

[ 1T*ar dz<Ch 3 (51,
R2 F3 B

Proof. Put P.={p=(, p)eZ": |pi, |p,|<2*} and P,=P,+2"*'y for
pe Z*. Since |S,NS,|=0if |[p—g|>2*"!, we have

j | T*af <2 3 j (3 o ts,@yde
<2 D% | (T 3 I, 1s,@)dz,

© D pj

where (p;, p,)=p runs over P,., We may assume |S,NS,|<C2*/(|p,—q,|+1)
for p=(p,, p;), I=(s q;) € P, by a geometric consideration (cf. [1]). Thus
the right hand side of (5) does not exceed

CE3 5 (e lad/(p—al+ D=0k 3 3 (Tla,,

# Di Pjrq
which proves Lemma 2.

Put T¥a=3>"a,|S,| "Xs,, where 3 * denotes the summation over p such
that 2¢<|S,|<2**'. Then, by Lemma 2, the left hand side of (3) is domi-
nated by

(5)

C+log N _ 1/2 C+logN
5 ([17raras) <0 VRIS e, b,
which implies (3).
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