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(Communicated by K6saku Y0SlDA, M.J.A., May 12, 1986)

1o Introduction and equations. In the previous paper [2], we justified
the magnetohydrodynamic approximation locally in time for certain two-
dimensional flow of an electrically conducting compressible fluid. It was
proved that the magnetohydrodynamic equations were obtained as the
singular limit of the complete equations at the vanishing of the dielectric
constant. The aim of this note is to justify the approximation globally in
time in case where the fluid is viscous and heat-conductive.

The equations considered are
p,+ div (pu) O,
p(ut+(u.V)u)+Vp=div (2/2P+/’I div u)+JB,

( 1 ) peo(Ot+u.VO)+Opo div u-div (cVO)+W+J(E+uB),
,E,- (1 //20) rot B+J 0,
B,+ rot E--0,

( 2 ) div B-0.
Here and in the sequel, we use the notations for two-dimensional vectors.
The unknowns p>0, u-(u, u), O>0, E (scalar) and B=(B, B) represent
the mass density, the velocity, the absolute temperature, the electric field
and the magnetic flux density, respectively. They are functions of time
t_>0 and space variable x=(x, x)e R. The pressure p and the internal
energy e are smooth functions of (p, O) such that p=p/p>O and eo=3e/30
0. The thermodynamic law de--OdS--pd(1/p) is always assumed, where
S (the entropy) is a smooth function of (p, 0). P is the deformation tensor,
whose entries are P=(1/2)(u*+3u), i, ]=1, 2, where

2z P+/’(div u)
is the viscous dissipation function. The current density J (scalar) is given
by Ohm’s law J=a(E+uB). The viscosity coefficients and ’, the heat
conductivity coefficient and the electric conductivity coefficient a are
smooth functions of (p, 0) such that Z>0, 2Z+Z’>0, >0 and a:>0. The
dielectric constant and the magnetic permeability go are assumed to be
positive constants.

The magnetohydrodynamic equations corresponding to (1), (2) are
given by

p, + div (pu) =0,
p(u,+ (u. V)u)+Vp- (1/0) rot B B div (2gP+/’I div u),

( 3 ) pe(O,+u.VO)+Op div u=div (VO)++(1/at)(rot B),
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g-- rot (u X B) rot {(1 / gp0) rot B},
( 4 ) div B =0.
In this ease, the electric field is determined by the relation
( 5 ) E E(p, , O, B) =_ u X B+ (1/g0) rot B.

Z. Global existence. We consider the system (1), (2) with the initial
data
( 6 ) (, u, , E, B)(O, x)= (, u, O, E, B)(x).
Let s3 be an integer, and let p0, 0 and B e R be fixed constants.
We assume the following conditions on the initial data.
( 7 ) For each e e (0, 1], (p$--p, u$, 0--, E, B-B) e H,

inf (p(x), O(x)}0, and div B=0 on R.
( 8 ) sup (p--p, u, --, /E, B--)[[=K+.

Let us denote by X’(T) the set of all functions (p, u, O, E, B)(t, x) satis-
fying the following conditions" (p--p, u, O--, E, B--B)e C(O, T; H’),
D(u, ) e L(0, T H’), (p, E, B) e C(0, T H’-) and 3(u, O) e C(0, T H’-)

L(0, T H’-). Let e e (0, 1] and t e [0, T]. For U =(p, u, O, E, B) e X(T),
we define M(t; U) by
(9) M,(t U)= sup [[(p-, u, O-, ’/E, B-B)(r)[[

0t

he following result concerning the existence of global solution of (1),
(2) is roved in the same way as in [1] (Theorem 8.2).

Theorem 1. Ame (7) g (8). The there ezit oitive eo-
tat igeeget o s e (0, 1] eh that iK, the iitil lue roblem
(1), (2), (6) ha a uique lobal oltio U =(0, , 0, N, B) e X(+ ),
hieh atie the etimte M(t; U)CKo t e [0, ). Here =
() i eontat ingeedet o s. Furthermore, or eaeh s, the olutio
eoere to the eotat tate (p, O, , O, B) uiormlg i e R t.

3. Estimates for time derivatives. In order to get shar estimates
for time derivatives of the solution, we make additional hypotheses for the
initial data"
(10) su s- 1N-N(Og, , 0, B) _=K<+,

(10) su s/-’ rot N ],_ =K< +,
where0 and ’ e [0, 1/2] are independent of s e (0, 1]. N(p, , O, B) is the
function in (g).

Let s e (0, 1] and t e [0, T]. Pot U =(0, , O, N, B) X(T) and e [0, 1],
we define N(t U, ) by

(11) N(t U, )= sup Op(r) I:_ +[ O(p, v, B)(r) dr
0grKt j0

(0rgt j0 )

Proposition 2. Assume (7), (8) and (10),. Then there exists a positive
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constant . (g) independent of e(0, 1] such that if K--K+K.+K<,
the solution U= (p’, u’, , E, B) e X’(+ oo) constructed in Theorem I satis-

ties the estimate N,(t U
max {1-2, 1--2’} e [0, 1], and C=C.() is a constant independent of

We give the outline of the proof. Let R,(t) =sup {ll (E+u X B)(r)I1-
0<r<t}. By the argument similar to that employed in the proo of
Proposition 3.1 of [2], we get the inequalities

I1, /.[o (, u, Bg()II dr<CK(12) Otp(t) s-1

(13) .[i 3t0(r)[ - drCg+cgR(t)’

<__ CK
(15 R(t)<_C(K+N(t U, r)).
Here we used the estimate M(t; U)<_CK. C=C() is a constant inde-
pendent of s. The conclusion of the proposition follows from the combina-
tion of the inequalities (1.)-(lg).

4. Convergence as s-+O. In addition to the conditions (7), (8) and
(10),, we assume the following" There is a function (po, o, 0, Bo)(x) with

(O---P, , 0--0, B--B) e H such that
(16) sup s-r I1(0--0, --o, 0--0, Bg--Bo)II_=K< + c,

where r>0 is independent of s e (0, 1].
Let Y"(T) be the set of all tunetions (0, , O, B)(t, x) satisfying the fol-

lowing conditions (O---P, , 0--, B-B) C(O, T; H), D(, O, B) e L(O, T;
H), 00 e C(O, T H-) and 0(, O, B) e C(O, T H-) L(O, T H"-).

Theorem 3. Ame (7), (8), (10), d (16). The there exit
positive constant (<_) independent of e(0, 1] such that if K--K+K
A-K<, the solution (p’, u., , E, B) e X(+oo) constructed in Theorem 1
satisfies the following properties" Let TO be arbitrary. Then (p, u,, E, B)(t, x) converges on [0, T] X R to a function (po, uo, o, Eo, BO)(t, x) as
-+0. The limit function (po, uo, o, BO)(t, x) excepting E(t, x) is a uniqzte
solution in Y’(T) of the magnetohydrodynamic equations (3), (4), with the
initial condition (po, uo, o, BO)(0, x)=(p0, u, o, B)(x). Also, the equation (5)
holds for the limit function. Moreover, the following estimate holds for
t e [0, T] and e (0, 1].
(17) (p*--p

where C,=C(3,)is a constant independent of , and 2=min {’, 1--]/2}>0
( is determined in Proposition 2).

This result can be proved by the energy method employed in the proof
of Theo.rem 5.1 of [2]. We omit the details.
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