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1. Introduction. Let x--(xl, x2,..., xn) be a vector in R and D a
region contained in R. Let f(x) (1 <=i<=n) be real-valued nonlinear func-
tions defined on D and f(x)=(f(x), f2(x),..,, f,(x)) an n-dimensional vector-
valued function. Then we shall consider a system of nonlinear equations
(1.1) x---f(x),
whose solution is .

As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a
formula, which is called the Aitken-Steffensen formula. Now, we have
studied the above Aitken-Steffensen formula in [2] and [4], and shown [2,
Theorem 2] and [4, Theorem 2]. Moreover, by considering the Steffensen
iteration method, we have also shown [3, Theorem 1], which improves the
result of [2, Theorem 2].

The purpose of this paper is to show Theorem 1 having a new relation
different from [2, Theorem 2], [3, Theorem 1] and [4, Theorem 2].

2. Statement of results. Let U() ={x x- }D be a neigh-
bourhood. Let IIxll and IIAll be denoted by

Ilxll--max Ixl and IIAll---max
li_n l<:t_n j=t

where A--(a) is an nn matrix.

Given x() e Rn, define x() e R (i--1, 2, ...) by
(2.1) x( +1) f(x()) (i =0, 1, 2, ).
Put
(2.2) d()--x()- for i=O, 1, 2, ...,
and then define an n n matrix D by

D (d(), d(+1), d
Throughout this paper, we shall assume the same conditions (A.1)-

(A.5) as in [2].
(A.1) f(x) (lin) are two times continuously differentiable on D.
(A.2) There exists a point e D satisfying (1.1).
(A.3) ]]J()ll<l, where J(x)=(f(x)/3xj) (1i, ]_<__n).
(A.4) The vectors d), d+’, ..., d+-’, k =0, 1, 2, are linearly

independent.
(A.5) inf
Then, we shall consider the Aitken-Steffensen formula
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(2.3) y()=x()-AX()(AX())-zx() (k=0, 1, 2, ...),
where an n-dimensional vector z/x (), and nn matrices z/X() and
are given by
(2.4) Ax() x( ) x(),
(2.5) X() =(x()- x(), ..., x()-- x(+-’))
and
(2.6) AX()=AX(+)--AX().

In this paper, we shall show the following
Theorem 1. Under conditions (A.1)-(A.5), for x () U(), a new rela-

tion of the form

holds with a constant M satisfying [[J()MI, where can be con-
sidered as "convergent term".

Remark 1. It follows from [2, Theorem 1] that x() as k, and
so, by [2, Theorem 2], y() as k.. Preliminaries. As mentioned in [2], we have, by (2.1), (2.2) and
(A.2),
(3.1) d( +) J()d() +(x()),
(x()) being an n-dimensional vector, and by (A.1),
(3.2) ][(x())]gi ]ld()ll for x() e U(),
a constant L being suitably chosen.

Define an nXn matrix Y(x(), ., x(+)) by
y(X(k), X(k+ (k+l))))=((x -(x()), ...,

Then, we have shown in [2] that there exist constants L and L such that
the inequalities
(3.3) Y(x(), x( +))] L d()

(3.4) ]X() L d()[
hold for x() e U().

For the proof of Theorem 1, we need the following two lemmas.
Lemma 1 follows from [2, Theorem 1].

Lemma 1. Under conditions (A.1)-(A.3), we have
(3.5) x( + ) M x()

for x() e U() and a constant M with ]]J()]]MI, and hence have

(3.6) x(+) e U().
Lemma 2 ([2, Lemma 4]). Under conditions (A.1)-(A.5), for x () e U(),

an nXn matrix AX() is invertible, and there exists a constant L such that
the inequality
(3.7) (AX())- ]gi d()II-holds for suciently large .

As easily seen, we obtain
(3.8) Ax( x)= (J() I)[Ax( + d(+ (J()-- I)-’(x( ")],
from (2.4), by (2.2), (3.1) and (A.3). By (2.5), we have
and, by (3.1),

d( ) d( -) (J() I)d( -)
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so that
(3.9) dX(+) =J()dX() + Y(x(), ..., x(+))
follows from (2.5). We observe that, from Lemma 2, by (3.6), AX+) is
invertible for x() e U(). Hence, by writing
(dX( + ’))-’ {(3X())- [I-- (dX( ’)) -’(d() I)3X()](3X()) ’}(d() I) -,
and using (2.6) and (3.9), we see that
(3.10) (AX(+’))-’={(AX())-’--(AX(+’))-[(J()--I)AX()

+ Y(x( +’), ..., x‘ +’))](AX())-’}(J() I)-’.
4. Proof of Theorem 1. We shall prove Theorem 1. As may be

seen by Remark 1 in 2, we have y() as k. Now, (2.3) gives
(4.1) y( ) d( ) AX( )(AX( ))-dx( + ).

Substituting (3.1), (3.8), (3.9) and (3.10) into (4.1), it yields
(4.2) y(+)-=J()(y()-)+(x())

+p(X(), ..., X(+n+))+p(X(), ., X(+n+e))
+p(x(), ..., x(++))+p(x(), ...,

where
(4.3)

--J(’x)AX(’)(AX())-[d() + (J(’x)-- I)-Zi(x( + ))],
(4.4) p(x

J(’x)dX
+ Y(x(+) x(+n+))](zIX())-(J(x)__I)-zlx(+)

(4.5) p(x
y(x(), ..., x(/,))(zyX())-(J()_I)-dx( ),

(4.6) pdx
Y(x(), ..., x(/))(A.X(/ ))-[(J(x)--I)dX()

-I- Y(x
Recall that x(/) e U(x), provided x() e U(). Then, (3.2), (3.3) and (3.7)
lead to
(4.7)
(4.8)
and
(4.9) (dX(+’))-’ [[__<L, d( ’) II-’,
respectively. Since d( ’) dx() + d(), it follows from (3.8) that

for a constant L chosen suitably. In (4.7), (4.8) and (4.10), we have used
the fact (3.5) in Lemma 1.

Now, as for equalities (4.3)-(4.6), there exist constants L, L, Ls and

L such that the following estimates (4.11)-(4.14) hold"
(4.11) Ilp(x(), ..., x(++))llL IId()ll
from (4.3), by (3.4), (3.7) and (4.7);
(4.12) p2(X (k), ", X(k + 2))[ L d()

from (4.4), by (3.4), (3.7), (4.8), (4.9) and (4.10);
(4.13) ps(x(), ..., x( )) gLs d() ][
from (4.5), by (3.3), (3.7) and (4.10);
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(4.14) liP4(x(), ", x(/n/))llL9 d)

from (4.6), by (3.3), (3.4), (3.7), (4.8), (4.9) and (4.10).,
Consequently, (4.2), together with (3.2) and (4.11)-(4.14), shows that

holds with a constant M satisfying [J()[MI, where
=(L%L+(L+Ls+i)[[d(*)l[)[Id(*)[[O as k.

Thus we have proved Theorem 1, as desired.
The author would like to express his hearty thanks to Prof. H. Mine

of Kyoto University for many valuable suggestions.
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