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Introduction. Let An Hn/Fn, where Hn is the Siegel space {Z e Mn(C)
IZ=Z, Im Z0), and Fn=SP(Z). A is shown to be of general type for
n9 by Tai [5] (n=8 by Freitag [2], n=7 by Mumford [4]). Subvarieties
of An are expected to have the same property if they are not too special.
We have the following theorem. The details of the proof are included in
Tsuyumine [9].

Theorem. Let n:>10. Then any subvariety in An of codimension one
is of general type.

We have the following corollary to this theorem (cf. Freitag [3]). We
denote by Fn(1) the principal congruence subgroup of level l, and by An,
the quotient space H/F(1).

Corollary. Let n10. Then the birational automorphism group of
An, equals Aut(An,)NFn/ +__Fn(1). In particular, An has no non-trivial
birational automorphism.

1o Preliminaries. The symplectic group SP2n(R) acts on H by the
usual symplectic substitution"

Z---->MZ (AZ+B) (CZ+D)- ’,

(A B) e Sp2n(R).M=CD
Let Z=(z), and let

{1 i],w=(--1)+edz/dz/ /dz/h. Adzn, e= 2 i=],
for l_i_]=n. Let =(o). Then we have

M co CZ/D (CZ -q- D)cot(CZ/ D),
and so

M co(R)r CZ+D ]- (n ) (CZ+D)(R)ro(R)r (CZ+D)(R)r.

A Siegel modular torm f admits the Fourier expansion f(Z)
=s>=oa(S)e(tr ((1/2)SZ)), e( standing for exp (2=J- 1 ). f is said to
vanish to order cr (at the cusp) if a is the minimum integer such that a(S)
=0 for S with minz,0{(1/2)S[g]}o, S[g] denoting gSg. We denote it

by ord (f).
2. Theta series. Let m be an integer with m2(n--1), and let be

a complex m (n--l) matrix satisfying both =0 and rank ]=n--1.
(1 =< i=n) denotes an (n- 1) n matrix given by
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We fix a positive symmetric matrix F of size m with rational coeffi-
cients. Let r be a positive integer, and let I, J be ordered collections of r
integers in {1,..., n} where a repeated choice is allowed. We define a
theta series associated with F by setting

where G runs through all m n integral matrices, and u, v are m, n matri-

ces with rational coefficients. We define ,r]-Uv](Z)to be a square matrix

of size n whose (k,/)-entry is O,]-](Z)where k=l+;= (i--l)n-,/=1

+,= (],--1)n’- with I= {i,..., i}, J=
Proposition 1. There is an integer such that

F.r [:] (MZ)=Z(M), CZ+D ](m/2) +2r (t(Cz
_

D)-1)(R)r F,r [] (Z)((ez+D)-I)(R)

holds for any M----( )eF(1) whereZ is amap of F(1) to the set of roots

of unity. Z is killed by some power.
The proof is done by the similar method as in Andrianov and Malolet-

kin [1], Tsuyumine [6], [7].
:. Multi.tensors of differentials. Let r’ be a positive integer such

that Z’=l. Let {M} be any system of representatives of F modF(/).
Let us put

(Z)--,ICZ-D[-((/)+r)" t(ez2c-D)(R)r’ , (MZ) (CZ/D)(R)"

where M=(: 9:)" Then (Z)satisfies

( ) (Z)=ICZ+D[(/)/)"(t(CZ/D)-)(R)’(Z)((CZ/D)-)e"

The following is shown by calculation"
Proposition 2. Let Zo be any point of H, and let W be any nonzero

complex symmetric matrix of size n. Let m be an integer with m>__2(n--1).
Then for infinitely many r and for infinitely many r’, there is a symmetric
matrix (Z) of size n" satisfying the above (.) for F, such that
tr ((Zo)W(rr’) ==0.
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Let us put ,,, tr ((Z)(R)"’).
By (.) and by the transformation formula of w(R)r’, we have the following"

Proposition 3. Suppose r(n-1)m/2. Then for any modular form
f of weight (r(n--1)--(m/2))r’, ffm,r,r, is a F-invariant form in
N=n(n+l)/2.

Let A denote the smooth locus of A. If n3, then A is the comple-
ment of the image of the fixed point set by the canonical projection ’H,
--->An. So f’m,r,r, in Proposition 3 can be regarded as a section of

if n>=3. By the similar argument as in Tai [5], the extendability of fm,r,r’
to a projective nonsingular model of An can be discussed.

Proposition 4. Let n>=7. If f is a modular form of weight (r(n-1)
--(m/2))r’ with ord (f)>=rr’, then a,multi-tensor f,r,r, of differentials ex-
tends holomorphically to a projective nonsingular model of

There are many modular forms satisfying the condition in Proposition
4, provided that n10 (cf. Freitag [3]). Indeed for a fixed subvariety D
of codimension one, there are lots of such modular forms f such that f0
on D. The restriction of ff,,, to D gives a pluri-canonical differential
form on it. So, our theorem is derived from the following lemma, which
is a consequence of Proposition 2 where the key is that a, subvariety in A
of codimension one is defined by a single modular form if n>=3 (cf. Tsuyu-
mine [8]).

Lemma. Let n>=3. Let D be any subvariety in As of codimension
one. Then for infinitely many r and for infinitely many r’ there are

2,,r, whose restrictions to z-l(D) do not vanish identically.
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