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22. Uniform Distribution of Some Special Sequences

By Kazuo GoTo*) and Takeshi KANO**)
(Communicated by Shokichi IYANAGA, M. J. A.,, March 12, 1985)

We know that (f(p.))7, where p, is n-th prime number, is uniformly
distributed mod 1 if f(x) is a polynomial with real coefficients and at least
one of the coefficients of f(x)— f(0) is irrational [6 or 2: Theorem 3.2], or
if f(x) is an entire function which is not a polynomial [4].

In this note we first consider some sufficient conditions that the
sequence (f(p,)); is uniformly distributed mod 1 where f(x) is a kind of
log-type function, and next we prove that (log #!); is uniformly distributed
mod 1. In fact we give an estimate for the discrepancy of each sequence.

1. Definition (discrepancy). Let a,, a,, ---,a, be a finite sequence
of real numbers. Then we define the discrepancy by

Dy=Dy(a,, s - - -, @y) =SUDocacsz1 | Ale, B) : N) /N — (B—0)|,
where A([a, f): N) is the number of terms a,, 1<n<N, for which {a,}
ele, f). {x} is the fractional part of x.

Lemma 1 (Erdos-Turan [2: p. 114]). For any finite sequence x,, x,,

oo, Zy of real numbers and positive integer m, we have
Dy /m)+ 25, /) |(A/N) 20, €|,

Theorem 1. Let f(x) be a continuously differentiable function with

f(@)—o00 (x—00). If f'(x)log x is monotone, n|f'(n)|>oo as n—oo, and
f(n)/(og n)'—0 (n—o0) for some [>1,

then (af(p))y is uniformly distributed mod 1, where a(x0) is any real

constant.

Proof. First we prove that the discrepancy Dy of f(p,), n=1,2, ...,
N, satisfies
(1) Dy <V f(py)/(log py)'+1/N max (1, 1/(log p,)| f'(0x) -

By Euler’s summation formula

Sw= 33 €I = () et/ P 2y J"” x(8) [/ (B H O dt
n=1 2
=(py) €410 _27ily j” (Li () + R®) f/ ()= dt
2
= Nt om —f” Li (£) d(e***/ ) — 2k jp” R(t) S/ (De=r1 0t
’ DN e27t’lhf(2t)

=Nen/em _[1j ()e? /O]y 4
2 log t

where n(x) is the number of primes <z and

dt —2rih JW R@®) /()1
2
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Li (x)=L l;itt

’ R(CIJ):n(x)_Li (x).
So we have
Sy= (N—Ll (py))erinwm 4 PN 2Rtk (L)
2 logt

Call these terms I,, I,, I,, respectively. By the P.N.T. of Hadamard
and de la Vallée Poussin, we have
R(x)<x/(log x)* for any k>1,

dt —2rnih rN R@) f(H)e 0 dt.
2

and
”1|<<p1v/(10gp1v)ko
By [6: Lemma 4.3 p. 61] and assumption,

| 2|=

DN e2ﬂihf(t) 1 1
L log ¢ l<<lhl <|f’(2) log 2|’ | f"(py)log pN{>'
Lis2eh [ RO ®ldt< P p(p,).
2 (log py)
Hence, for >0,

2xinf(Pn)

1 1 hpyf(®x)
&= max (1, v )+ N .
h | f'(x)|logpy/  (log py)*
Using Lemma 1 and py~N log N,
1 = 1 (1 1
N }
»< m +'»Z=1 hN {h max | f(px)|1log Dy + (1og pN)" J @
1 1 1 PuS(Dw)
& —+ - max (1, v )+ NN
m (log pw)| f'(@x)|/  N(log py)*

N

If we put m=[v N(og p)*/pxf(py)], then
Dy f(py)/(og py)*-" +(1/N) max (1, 1/(og py) | f/(®x))-
Thus we obtain (1). Since by assumption,
1/N-1/(og py) f'0y) L1/0al f'(0x)|—0 (N—o0),

we have D,—0 as N—o. q.e.d.

Theorem 2. Let f(x) be a continuously differentiable function with
F'®)>0 and f')>0. If t*f"({t)—>oo as t—co and

SF(m)/(log n)'—0 (n—>o0) for some I>1,

then (af(p,)y is uniformly distributed mod 1, where o« (x0) is any real
constant.

Proof. The proof runs along the same lines as that of Theorem 1.
Using [7: Lemma 10.2, p. 225], we have

PN p2rih [ (L)
L=, o d\

1/2

te[z PN] log t hf"(t)
By Lemma 1, we obtain
Dy<1/m+1/N maXep,,ym (1/(og t)\/m)‘i' (pxf(px)/N(log py))m.
Putting m=[v N(log py)*/p~f(Px)] and using py~N log N, we have
Dy < f(py)/(log py)'+10g Dy/(Dy MaX,e. s, (log VD)) .
Now we consider
Jie log py log py .
Py MaX,.,.,, log V@) Py Maxy,o,y (log 1)/ ()
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Since (log t)/t is monotonely decreasing for t>e,
log py 1

J< = —
Py (108 Dy /Dy) MAXygrcpy WV F/(D) MaXsg o0y vV EF (D)
1
< —0 (N—o0).
Vi " (oy)
So we have Dy—0 as N—oo. q.e.d.

2. The sequence (logn!), n=1,2, - .-, is uniformly distributed mod 1,
which means that Benford’s law holds for the sequence (n!), n=1,2, -- -,
[38]. Now we prove a more precise result by estimating the discrepancy of
(log n!).

Theorem 3. The discrepancy Dy of (logn!), n=1,2, ..., N, satisfies
for any ¢>0,

Dy N-+e,

Proof. By Stirling’s formula [1: p. 129], for any positive integer =

we have
logn!=371_,log j=(n+1/2)log (n+1)—(n+1)+k+R(n+1),
where k is a constant and R(t) is defined by

R(t)=f%%—dw, where p(@)=[e]—z+(1/2), t>0.

Then
R’(t)=—d« = p(x) dx = = —p(x) dax
dt Jo t+z o (t+2)?

Y p(x) — < 1 2p(x)

R (t)_j0 P2z ZOJ“ O
. o _ n—x+(1/2) n+1_ n+1 dx
"ZJ«) {[ (t+2) ] .[ (t+x)2}
_= 1y 1 1 11
_:4;0 [2 { t+z)? (E+n+1)3 + t+n+1 t+n]

1
n=0 2(t+n)*(t+n+1)°
Now we consider

II
[Ms

N
SN= Z: e21rih leg n!

n=1

N
— Z eZntlL[(n +(1/2)) log (n+ )=+ 1)+ b+ R(n+1)]

n=1

N
— eZnthk Z eznih[(n+(l/2)) log (n+1)+}2(n+1)]'
n=1

We set for any integers a and b, S(a, b)=S,—S,, and for k e Z—{0},
JS)=hl(u+@1/2)) log (u+1)+ R(u+1)].
So we obtain
[R'(H)|<1/2, R”(H)=0 and @1/h)f"()=@1/(E+1).
Hence by [7: Lemma 4.6, p. 198],
1S(a, b)|<|e** || f(b)— Sf'(@) |[+21(4V b+ 1) / v/ h]+3) -
<|h|llog (b+1)/(a+1)+1/2)A/(a+1)—1/(b+1))+ 31Wb/|A].
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If a<b<2a, then
(2) |S(a, )| V|R|V b .
For any given N, we choose a such that 2°<N<2¢*!, Then we have
Sy=80,1)+81,2)+ - --+8@*,2)+8(2%, N),
and by (2),
ISyl &V R] X4/ 2™ +4 RV N <V [h[¥ N .
Thus for any function g(n) which tends monotonically to infinity, we
get
limy_.. Sy/v/ N g(N)=0,
which implies that there exists an Ny (k) such that
ISy|<¥'Ng(N)  for all N=N,(h).
Hence by Lemma 1, we obtain
Dy« /m)+ 35y A/hN)W N g(N)
LA /m)+@1/v N)g(N)-log m.
If we choose m=[N“®-¢], then for all N>=max (N,, (h-+1)¥“-2%) we have
Dy N-»+:11/y/ N g(N)-log NEN-D+eg(N) L N-am+e
because of the definition of g(n). q.e.d.
Corollary. The sequence (log n!), n=1, 2, ---, is uniformly distri-
buted mod 1.
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