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1. Introduction. In this note, we shall study strong hyperbolicity
for first order hyperbolic systems;

d

L(x, D)= --Do+ A(x)D+B(x),
where A(x), B(x) are NN matrices with smooth entries defined near the
origin in RTM with coordinates x=(Xo, X’)=(Xo, x, ..., x) and D
=-i(/3x). Denote =($o, ’)=($0, ," ", ) and by h(x, ) the determi-
nant of the principal symbol L(x, ) of L(x, D);

d

L,(x, )----0-t- A(x),
=1

and say that L(x, ) is strongly hyperbolic if the Cauchy problem for
L(x, D)is C well posed near the origin for any lower order term B(x)
([8]). Throughout this paper, we. assume that h(x, ) is hyperbolic with
respect to dxo near the origin, i.e. h(x, o, ’)--0 has only real roots or any
(x, ’), ’ e R\0, x e R+ (x near the origin) and urthermore we assume
that the multiplicities of these characteristic roots are at most two.

We shall prove that if L(x, ) is strongly hyperbolic near the. origin
then at every point (x, ) e T*R \0 (x near the origin), L,(x, ) is effectively
hyperbolic or diagonalizable (that is similar to a diagonal matrix). Con-
versely when L:(x, )is effectively hyperbolic at every p--(, ) with z(o)
--(, $’), we know that for any B(x), there is a parametrix o.f L(x, D) near
(’, $’)with finite propagation speed of wave front sets ([10]), where z is
the projection from T*R+ to RT*R off 0. In case L(x, )is diagonal-
izable near every p with z(p)=(, $’), we shall show, under some additional
conditions, that L:(x, ) is smoothly symmetrizable near (x, ’). Hence for
any B(x), L(x, D) has a parametrix near (’, $’) with finite, propagation
speed of wave ront sets.

2. Notations and results. Let Lo(x, ) be the symbol of degree 0 of
L(x, ), L:(x, ) the cofactor matrix of L(x, ), and L’(x, ) the subprin-
cipal symbol of L(x, );

i (3/3x)L,(x, ).Ls(x, )= Lo(x, )+
=0

We denote by F(p) the Fundamental (Hamilton) matrix corresponding to
the Hessian Q of hi2 at p and set

Tr+ h(p)
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where i/ are the eigenvalues of F(p) on the positive imaginary axis re-
peated according to their multiplicities. We say that L(x, ) is effectively
hyperbolic at p if F(p) has non zero. real eigenvalues (see [4], [5]).

We introduce the following symbol (see. [2]).
i {L,L}(x, ),l(x, )=L(x, )L(x, )--

where {L, L}=E=0((/)L(/x)(L)-- (/3x)L,(3/3)(L,)) Let p=

(, ) e T*R/\O be a point such that dh(p)=O. We say that L(x, ) satisfies
the condition (H) at p if there are a real number a with lal<=l and NN
matrix 9 such that
(H) l(p)+aTr h(p) L(p)9.
This condition corresponds to the Ivrii-Petkov condition or scalar non
effectively hyperbolic operators ([4], [5]). We note that the. condition (H)
remains invariant after similarity transformations to L by non singular
smooth matrix and also invariant after changes of coordinates x. These
facts follow from the. proof of Theorem I in [11] (see also [1]).

First we. state a necessary condition for C well posedness of the
Cauchy problem for L(x, D).

Theorem 2.1. Let p e T*R/\O. We assume that L(x, ) is not effec-
tively hyperbolic nor diagonalizable at p. Then for the Cauchy problem

for L(x, D) to be well posed, the condition (H) at p is necessary.
In case F(p) is nilpotent, the condition (H) yields to the Levi condition.

From this theorem it follows that
Corollar 2.1. Suppose that L(x, ) is strongly hyperbolic near the

origin. Then at every (x, ) e T*R/\O (x near the origin), L(x, ) is
effectively hyperbolic or diagonalizable.

Remark 2.1. In case d=l, this result was shown in [9] and the case
when A(x) depend only on x0, this is obtained in [14]. In both cases we
have Tr/h(p)=O.

Theorem 2.2 ([10]). Assume that L(x, ) is effectively hyperbolic at
every p such that z(p)=(, ’). Then, in a sufficiently small conic neigh-
borhood of (’, ’), there is a parametrix of L(x, D) with finite propagation
speed of wave front sets.

Remark 2.2. In general, effectively hyperbolic systems are not
smoothly symmetrizable because effectively hyperbolic systems may cause
a great loss o.f regularity of solutions in contrast to symmetric systems.

Next, taking Corollary 2.1 and Theorem 2.2 into account, we study
the case that L(x, ) is diagonalizable near every p such that (p)=(, ’).
In this case we impose the same condition on the double characteristic set
of h under which the Cauchy problem for scalar non effectively hyperbolic
operators was studied in [4] and [6].

The double characteristic set X=((x, ); dh(x, )=0} is a manifold
(2.3) and the rank of the Hessian o.f h is equal to the codimension of X

at every point of 2.
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Lemma 2.1. Assume (2.3) and that L(x, ) is diagonalizable near
every p with =(p)=(x, $’). Then the codimension of X is at most 4. More-
over if Ll(x, ) is real then the codimension of X is at most 3.

Theorem 2.:. Assume (2.3) and that L(x, ) is diagonalizable near
every p with u(p)--(x, ’) and the codimension of X is at most 3. Then
L(x, ) is smoothly symmetrizable near (, ’) i.e. there is a smooth matrix
S(x, ’), homogeneous of degree 0 in ’ defined near (, ’) and satisfying the
following conditions,
(2.4) S(x, ’) S*(x, ’) 0
(2.5) S(x, ’)Ll(x, )--L*(x, )S(x, ’),
where a* denotes the ad]oint Matrix of a.

Corollary] 2.2. Assume (2.3) and that L(x, ) is real and diagonal-
izable near every p with =(p)=(, $’). Then the same conclusion as Theorem
2.3 holds with real symmetric S.

Remark 2.:. When the characteristic roots are of constant multi-
plicities, L(x, ) is strongly hyperbolic if and only if L(x, ) is diagonal-
izable ([7]). This case occurs only when the. codimension of X is 1.

Theorem 2.4. Assume (2.3) and that L(x, ) is real and at ever
point p e with =(p)=(, $’), one of the following conditions is fulfilled,
(2.6) L(x, ) is effectively hyperbolic at p,
(2.7) L(x, ) is diagonalizable near p on X.
Then, in a sufficiently small conic neighborhood of (’, ’), L(x, ) has a

parametrix with finite propagation speed of wave front sets for any B(x).
:. Remarks on localizations. In this section we assume that N--2

and L(x, ) is diagonalizable at p where dh(p)=O. Denote by L,(x, ) the
lowest homogeneous part in the Taylor expansion of L(x, ) at p. Then
it is clear that L(p)-0 and hence L,(x, ) is a first order system in (x, ),
which may be. called the localization of L(x, ) at p (cf. [13]).

Proposition :.1. Let N---2 and Ll(p)---O. Then the rank of the Hessian

of h at p is at most 4 (resp. 3 in the case A(x) are real). If the rank:

of the Hessian of h at p is 4 (resp. 3 in the case Aj(x) are real) then witl
some non singular matrix T, T-L,(x, )T is Hermitian for all (x,
Hence L,(x, ) is strongly hyperbolic system on T(T*R/) with respect ta
dxo.

Proposition :.2. Let N--2 and assume that (2.3) and L(x, ) is di-
agonalizable at every point of X near p. Then the same conclusion as in
Proposition 3.2 holds.

Remark :.1. In constant coefficients case, (2.3) is always ulfilled,
then rom Proposition 3.2, we reobtain Theorem 5 in [12] since L,(x, )--
LI().

Remark :.2. Proposition 3.2 is an analogue of the result of [13] o.r
strongly hyperbolic systems with constant coefficients. However, in
general, strong hyperbolicity of L,(x, ) is not necessary or strong hyper-
bolicity o L(x, ) even if L(p)=0.
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