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1o Introduction. Throughout this paper, we shall work within the
category of compactly generated spaces. A CW complex means a connected
CW complex with base point which is a chosen vertex. Let X be a CW
complex with base point Xo, G(X) the space of self homotopy equivalences
of X and Go(X) the space of self homotopy equivalences of (X, Xo). When
X is an Eilenberg-MacLane complex K(, n), the weak homotopy type of
G(X) and Go(X) was determined by R. Thom [10] and D. H. Gottlieb [3].
We will denote X_Y if X has the same weak homotopy type as Y. In
[11], [12], the author studied G(X) and Go(X) when X is a certain product
CW complex. The purpose of this paper is to study Go(X) when X is a

fibre space of a Hurewicz fibration" F ;X p ;B. In the sequel we simply
call a Hurewicz fibration a fibration.

2. The function spaces and fibrations. When X and Y are spaces
with base points x0, Y0 we denote by map (X, Y) the space of maps of X to
Y and by map (X, Y) the space of maps of (X, x0) to (Y, Y0)- Moreover,
when / is a map of X to Y, we denote by map (X, Y;/) the arcwise
connected component of / in map (X, Y), and map0 (X, Y;/) is defined
similarly.

Let X be a CW complex and A a subcomplex of X. And let p: E---B
be a fibration. Then, we denote by map0 (X, B)’ mapo (A, E)the fibred
product of the following fibrations i" map0 (X, B)map0 (A, B) and p"

map0 (A, E)--map0 (A, B), where i is induced by the inclusion i: (A, x0)
-(X, x0) and p# is induced by the projection p" (E, eo)-(B, bo). Now we
define a map p map0 (X, E)-+map0 (X, B)’ map0 (A, E) by p(f)= (p f, f i).
Then we have the following propositions.

Proposition 1. p map0 (X, E)-+map0 (X, B)’ map0 (A, E) is a fibra-
tion.

Proposition 2. Let E and B be CW complexes and let p: E-B be a

fibration with fibre F which is a subcomplex of E. For a given nl, if
F is (n-1)-connected and z(B)=0 for every in, then we have

map (E, B)’ map0 (F, E)-map0 (B, B) map0 (F, F).

This proposition is proved by using the fact that map0 (F, B) is weakly
contractible.

From Propositions 1 and 2 we get the first main result:
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Theorem 1o Under the hypothesis of Proposition 2, we have the
following fibration

(E mod F) )Go(E) )B’,
where B’ is a subspace of map0 (E, B) ’ map0 (F, E) with the same weak
homotopy type as Go(B) Go(F) and (E rood F)is the space of self fibre
homotopy equivalences of E leaving the fibre F fixed.

3. Fibration map theory. We introduce a fibration map theory for
fibrations which corresponds to the bundle map theory for principal bundles
initiated by I. M. James [6] and developed by D. K. Gottlieb [4], [5].

Let p" E-B and p’" E’--.B’ be fibrations with arcwise connected base
spaces B and B’. Then, let us begin with

Definition. Let f" E-+E’ and f" BoB’ be maps such that p’ f f p.
If f carries each fibre of E into a fibre of E’ by a homotopy equivalence,
we call f a fibration map.

Let *(E, E’) be the space of fibration maps of E to E’ and let *(E,
E’;/) be the arcwise connected component of t in *(E, E’). We define a
map " _*(E, E’)-map (B, B’) by setting (f)=f for each fibration map
E--.E’, where f is a map of B to B’ induced by ]. Then we have the
fibration

" *(E, E’) ;map (B, B’).
Moreover, let E, E’, B and B’ be CW complexes. Let B0 be a connected

subcomplex of B such that p-(Bo)=Eo is a subcomplex of E. Then we
have the following

Theorem 2. Let " Eo-E be the inclusion, then

" ?*(E, E’) *(Eo, E’)
is a fibration.

Under the same situation as above, let furthermore " Eo-E’ be a
fixed fibration map which induces a map a" Bo--B’ and is extendable to a
fibration map of E to E’. We denote by *(E mod E0, E’) the space of fib-
ration maps of E to E’ which restrict on E0 to . Let denote also the
restriction of " *(E, E’)--.map (B, B’) on *(E mod E0, E’). Then we
have the following

Theorem 3. This map

" *(E mod E0, E’) ;map (B mod Bo, B’)
is a fibration, where map (B mod Bo, B’) is the space of maps from B to
whose restriction on Bo is the map .

Let _(E)be the space of self fibre homotopy equivalences of E. Then
we have the following theorems.

Theorem 4. Let 29" E--B and p" E’-B’ be fibrations, where B and
B’ are CW complexes. A fibre q-(h) over h in the fibration

’*(E, E’) ;map (B,
has the same homotopy type as (E) for each h.

Theorem 5. Under the hypothesis of Theorem 2, i induces a map



No. 1] The Spaces of Self Homotopy Equivalences 17

" (E) ;(E0),
which is a fibration.

Now, let p" E--B be a fibration with fibre F, where B and F are CW
complexes. Then there exists a universal fibration p" E--B with fibre
F, where B may be regarded as a classifying space BG(F) [1], [7]. Then
our preceding results (Theorems 2 and 3) together with the theorem
Gottlieb [4] yield

* E /)Theorem 6. Under the hypothesis of Theorem 2, _qo( mod E0, E
is weakly contractible, where k" E--+E is a fibration map inducing a clas-

sifying map I" B--+B for the fibration" F ;E

Let (E mod E0) be the space of self fibre homotopy equivalences of E
leaving p-(B0)=E0 fixed, then from Theorem 6 we have the following

Theorem 7. Under the hypothesis of Theorem 2, we have
(E mod Eo)9 mapo (B rood B0, B k),

where k" B--B is a classifying map for the fibration p" E--B.
Remark. Our results on the fibration map theory have some overlaps

with results of [2].

4. Applications. By using Theorem 7, we have the following
Theorem 8. Let p" E-B be a fibration with fibre F=K(, n) (nl)

such that E and B are both CW complexes and F is a subcomplex of E.
Assume B is simply connected, then we have

(E mod F)map0 (B, K(, n))Hn(B, ) X K(Hn-(B, ), i).

About the map p" Go(E)-+Go(B)X Go(F), we have the following
Theorem 9. Under the hypothesis of Proposition 2, the image of p"

Go(E)--+Go(B) X Go(F)is lust the union of the arcwise connected components
in Go(B)X Go(F) each of which contains (g, h) satisfying

[(h)]o[k]--[k]o[g],
where Z(h) is a self map of B and k" B--.B is a classifying map of the
fibration p" E-+B.

Let (X)denote the group o(G(X))for a CW complex X. By using
Theorems 1, 8, and 9 we have

Theorem 10. For given 1 m n, let

F=K(’, n) K(, m)=B
be a fibration with a classifying map k" B---K(’, n+l) ([k] e Hn+I(B, ’))
and let (E, F) be a CW pair. Then we have

Go(E)-R X Hn(B, r’) X K(Hn-*(B, ’), i),

where R is the subgroup of Aut ()xAut (’)=(B)x(F) consisting of
([g], [h]) with

(Bh).([k]) g* ([k]).
Here g* and (Bh). are the automorphisms of H=/(B, ’) induced by g

and Bh respectively.
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As a corollary of Theorem 10, we have the following theorem proved
by W. Shih [9] and Y. Nomura [8].

Theorem. Under the hypothesis of Theorem 10, there exists the fol-
lowing eac sequence

1 Hn(B, ’) (E) R 31,
where R is the same group as the group stated in Theorem 10.
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