3. The Exponential Calculus of Microdifferential Operators of Infinite Order. V

By Takashi Aoki
Department of Mathematics, Kinki University
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. Introduction. The purpose of this note is to establish a relation between operators with exponential symbols and exponential operators. For each formal symbol q of order 1-0 (see [1]-[3] for the notation), we construct a formal symbol p of order $1-0$ satisfying (1.1) $\exp : p:=: \exp q:$.
2. Statement of the results. We use the same notation as in [2]. Let $q(t ; x, \xi)=\sum_{j=0}^{\infty} t^{j} q_{j}(x, \xi)$ be a formal symbol of order at most $1-0$ defined in a conic open set Ω in $T^{*} X$. We introduce inductively a sequence of symbols $\left\{\psi_{i, k}^{(j)}(x, y, \xi, \eta)\right\}$ defined in $\Omega \times \Omega$ by the following :

$$
\begin{gather*}
\psi_{\psi_{0}^{(0,0}(x, y, \xi, \eta)=q_{0}(x, \xi),} \begin{array}{c}
\psi_{l, 0}^{(j)}(x, y, \xi, \eta)=0, \quad j=1,2, \cdots ; l=0,1,2, \cdots, \\
\psi_{i, k+1}^{(j)}(x, y, \xi, \eta)=\frac{1}{k+1}\left\{\partial_{\xi} \cdot \partial_{y} \psi_{i, k}^{(j)}(x, y, \xi, \eta)\right. \\
\left.+\sum_{\nu=0}^{l} \sum_{\mu=0}^{j-1} \sum_{i=0}^{l-\nu} \frac{1}{j-\mu} \partial_{\xi} \psi_{\nu, k}^{(\mu)}(x, y, \xi, \eta) \cdot \partial_{y} \psi_{i, l}^{(j-\mu-\nu-1)}(y, y, \eta, \eta)\right\}, \\
\psi_{k, 0}^{(0)}(x, y, \xi, \eta)=q_{k}(x, \xi)-\sum_{j=0}^{k} \sum_{i=0}^{k-1} \frac{1}{j+1} \psi_{l, k-l}^{(j)}(x, x, \xi, \xi) .
\end{array} . \tag{2.1}
\end{gather*}
$$

If $\psi_{i, k}^{(j)}$ is known for $l+k \leq m$, then $\psi_{i, k}^{(j)}$ is defined for $l+k \leq m+1$ by (2.2)-(2.4). We set

$$
\begin{equation*}
p_{k}(x, \xi)=\psi_{k, 0}^{(0)}(x, x, \xi, \xi) \tag{2.5}
\end{equation*}
$$

and define a formal power series in t by

$$
\begin{equation*}
p(t ; x, \xi)=\sum_{k=0}^{\infty} t^{k} p_{k}(x, \xi) \tag{2.6}
\end{equation*}
$$

Remark. $\psi_{k, 0}^{(0)}$ is independent of (y, η).
Theorem 1. The formal series $p(t ; x, \xi)$ is a formal symbol of order at most 1-0 defined in Ω so that
(2.7) $\quad \exp : p(t ; x, \xi):=: \exp q(t ; x, \xi):$
holds in \mathcal{E}^{R}.
Let λ be a real number such that $0 \leq \lambda<1$. Then we have the following

Theorem 2. If $q_{j}(x, \xi)$ is of order at most $(j+1) \lambda-j(j=0,1,2, \cdots)$, then $p_{k}(x, \xi)$ is of order at most $(k+1) \lambda-k(k=0,1,2, \cdots)$.
3. Invertibility. As an application of Theorem 1, we obtain the following theorem of invertibility for operators of infinite order,
which is a generalization of Theorem 5 in [1]:
Theorem 3. Let $P(x, \xi)$ be a symbol defined in a conic open neighborhood of $\dot{x}^{*} \in T^{*} X$. If $P(x, \xi)$ is invertible as a symbol, that is, $1 / P(x, \xi)$ is also a symbol defined near \dot{x}^{*}, then $: P(x, \xi)$: is invertible in $\mathcal{E}_{\hat{x}^{*}}^{R}$.
4. Outline of the proof of Theorem 1. It follows from Theorem 2 in [2] that, if $p(t ; x, \xi)=\sum t^{f} p_{j}(x, \xi)$ is given, then $q(t ; x, \xi)$ satisfying (2.7) is constructed as follows: Let us introduce $\left\{\psi_{i, k}^{(j)}(x, y, \xi, \eta)\right\}$ and $\left\{q_{k}^{(j)}(x, \xi)\right\}$ by

$$
\begin{gather*}
\psi_{l, 0}^{(0)}=p_{l}(x, \xi), \quad l=0,1,2, \cdots, \tag{4.1}\\
\psi_{l, 0}^{(j)}=0, \quad j=1,2, \cdots ; \quad l=0,1,2, \cdots, \tag{4.2}\\
q_{k}^{(j+1)}(x, \xi)=\frac{1}{j+1} \sum_{l=0}^{k} \psi_{l, k-l}^{(j)}(x, x, \xi, \xi), \tag{4.3}\\
\psi_{l, k+1}^{(j)}=\frac{1}{k+1}\left(\partial_{\xi} \cdot \partial_{y} \psi_{l, k}^{(j)}+\sum_{\nu=0}^{l} \sum_{\mu=0}^{j-1} \partial_{\xi} \psi_{l, k}^{(\mu)} \cdot \partial_{y} q_{l-\nu}^{(j-\mu)}(y, \eta)\right) . \tag{4.4}
\end{gather*}
$$

Then $q(t ; x, \xi)=\sum_{k=0}^{\infty} t^{k} q_{k}(x, \xi)$ is obtained by

$$
\begin{equation*}
q_{k}(x, \xi)=\sum_{j=1}^{k+1} q_{k}^{(j)}(x, \xi) \tag{4.5}
\end{equation*}
$$

If we can solve $\left\{p_{k}(x, \xi)\right\}$ from $\left\{q_{j}(x, \xi)\right\}$ conversely by (4.1)-(4.5), then $p(t ; x, \xi)=\sum t^{k} p_{k}(x, \xi)$ satisfies, at least formally, (2.7) for given $q(t ; x, \xi)=\sum t^{j} q_{j}(x, \xi)$. Such procedure can be done by eliminating $q_{k}^{(j)}$'s from (4.3)-(4.5). Then we have (2.1)-(2.5).

References

[1] T. Aoki: The exponential calculus of microdifferential operators of infinite order. II. Proc. Japan Acad., 58A, 154-157 (1982).
[2] ——: ditto. IV. ibid., 59A, 186-187 (1983).
[3] -: Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I (to appear in Ann. Inst. Fourier, Grenoble, 33-4, (1983)).

