3. The Exponential Calculus of Microdifferential Operators of Infinite Order. V

By Takashi Aoki

Department of Mathematics, Kinki University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. Introduction. The purpose of this note is to establish a relation between operators with exponential symbols and exponential operators. For each formal symbol q of order 1-0 (see [1]-[3] for the notation), we construct a formal symbol p of order 1-0 satisfying (1.1) exp: $p := : \exp q :$.

2. Statement of the results. We use the same notation as in [2]. Let $q(t; x, \xi) = \sum_{j=0}^{\infty} t^j q_j(x, \xi)$ be a formal symbol of order at most 1-0 defined in a conic open set Ω in T^*X . We introduce inductively a sequence of symbols $\{\psi_{l,k}^{(j)}(x, y, \xi, \eta)\}$ defined in $\Omega \times \Omega$ by the following: (2.1) $\psi_{0,0}^{(0)}(x, y, \xi, \eta) = q_0(x, \xi),$

(2.2)
$$\psi_{l,0}^{(j)}(x, y, \xi, \eta) = 0, \quad j = 1, 2, \cdots; l = 0, 1, 2, \cdots,$$

$$(2.3) \quad \psi_{l,k+1}^{(j)}(x,y,\xi,\eta) = \frac{1}{k+1} \Big\{ \partial_{\xi} \cdot \partial_{y} \psi_{l,k}^{(j)}(x,y,\xi,\eta) \\ + \sum_{\nu=0}^{l} \sum_{\mu=0}^{j-1} \sum_{i=0}^{l-\nu} \frac{1}{j-\mu} \partial_{\xi} \psi_{\nu,k}^{(\mu)}(x,y,\xi,\eta) \cdot \partial_{y} \psi_{i,l-\nu-i}^{(j-\mu-1)}(y,y,\eta,\eta) \Big\},$$

$$(2.4) \qquad \psi_{k,0}^{(0)}(x,y,\xi,\eta) = q_{k}(x,\xi) - \sum_{j=0}^{k} \sum_{l=0}^{k-1} \frac{1}{j+1} \psi_{l,k-l}^{(j)}(x,x,\xi,\xi).$$

If $\psi_{l,k}^{(j)}$ is known for $l+k \le m$, then $\psi_{l,k}^{(j)}$ is defined for $l+k \le m+1$ by (2.2)-(2.4). We set

(2.5) $p_k(x,\xi) = \psi_{k,0}^{(0)}(x,x,\xi,\xi)$

and define a formal power series in t by

(2.6)
$$p(t; x, \xi) = \sum_{k=0}^{\infty} t^k p_k(x, \xi).$$

Remark. $\psi_{k,0}^{(0)}$ is independent of (y, η) .

Theorem 1. The formal series $p(t; x, \xi)$ is a formal symbol of order at most 1-0 defined in Ω so that (2.7) $\exp: p(t; x, \xi) := :\exp q(t; x, \xi):$ holds in \mathcal{C}^{R} .

Let λ be a real number such that $0 \le \lambda \le 1$. Then we have the following

Theorem 2. If $q_j(x,\xi)$ is of order at most $(j+1)\lambda - j$ $(j=0,1,2,\cdots)$, then $p_k(x,\xi)$ is of order at most $(k+1)\lambda - k$ $(k=0,1,2,\cdots)$.

3. Invertibility. As an application of Theorem 1, we obtain the following theorem of invertibility for operators of infinite order, which is a generalization of Theorem 5 in [1]:

Theorem 3. Let $P(x,\xi)$ be a symbol defined in a conic open neighborhood of $\mathring{x}^* \in T^*X$. If $P(x,\xi)$ is invertible as a symbol, that is, $1/P(x,\xi)$ is also a symbol defined near \mathring{x}^* , then $:P(x,\xi):$ is invertible in \mathcal{C}^R_{**} .

4. Outline of the proof of Theorem 1. It follows from Theorem 2 in [2] that, if $p(t; x, \xi) = \sum t^j p_j(x, \xi)$ is given, then $q(t; x, \xi)$ satisfying (2.7) is constructed as follows: Let us introduce $\{\psi_{l,k}^{(j)}(x, y, \xi, \eta)\}$ and $\{q_k^{(j)}(x, \xi)\}$ by

(4.1)
$$\psi_{l,0}^{(0)} = p_l(x,\xi), \qquad l = 0, 1, 2, \cdots,$$

(4.2)
$$\psi_{l,0}^{(j)} = 0, \quad j = 1, 2, \cdots; \quad l = 0, 1, 2, \cdots,$$

(4.3)
$$q_{k}^{(j+1)}(x,\xi) = \frac{1}{j+1} \sum_{l=0}^{n} \psi_{l,k-l}^{(j)}(x,x,\xi,\xi),$$

(4.4)
$$\psi_{l,k+1}^{(j)} = \frac{1}{k+1} \bigg(\partial_{\xi} \cdot \partial_{y} \psi_{l,k}^{(j)} + \sum_{\nu=0}^{l} \sum_{\mu=0}^{j-1} \partial_{\xi} \psi_{\nu,k}^{(\mu)} \cdot \partial_{y} q_{l-\nu}^{(j-\mu)}(y,\eta) \bigg).$$

Then $q(t; x, \xi) = \sum_{k=0}^{\infty} t^k q_k(x, \xi)$ is obtained by

(4.5)
$$q_k(x,\xi) = \sum_{j=1}^{k+1} q_k^{(j)}(x,\xi).$$

If we can solve $\{p_k(x,\xi)\}$ from $\{q_j(x,\xi)\}$ conversely by (4.1)–(4.5), then $p(t; x, \xi) = \sum t^k p_k(x, \xi)$ satisfies, at least formally, (2.7) for given $q(t; x, \xi) = \sum t^j q_j(x, \xi)$. Such procedure can be done by eliminating $q_k^{(j)}$'s from (4.3)–(4.5). Then we have (2.1)–(2.5).

References

- T. Aoki: The exponential calculus of microdifferential operators of infinite order. II. Proc. Japan Acad., 58A, 154-157 (1982).
- [2] ——: ditto. IV. ibid., 59A, 186–187 (1983).
- [3] ——: Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I (to appear in Ann. Inst. Fourier, Grenoble, 33-4, (1983)).

No. 1]