8 Proc. Japan Acad., 60, Ser. A (1984) [Vol. 60(A),

3. The Exponential Calculus of Microdifferential
Operators of Infinite Order. V

By Takashi AOKI

Department of Mathematics, Kinki University

(Communicated by Kdsaku YoSIpA, M. J. A., Jan. 12, 1984)

1. Introduction. The purpose of this note is to establish a rela-
tion between operators with expomnential symbols and exponential
operators. For each formal symbol q of order 1—0 (see [1]-[3] for
the notation), we construct a formal symbol p of order 1—0 satisfying
a.1) exp:p:=:expq:.

2. Statement of the results. We use the same notation as in [2].
Let q(t; x, &)=25.,t'q;(x, &) be a formal symbol of order at most 1—0
defined in a conic open set 2 in T*X. We introduce inductively a
sequence of symbols {4{(x, ¥, &, )} defined in 2 X 2 by the following:
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If 4§ is known for I+k<m, then {7} is defined for I+ k<m-+1 by
2.2)-(2.4). We set

2.5) pu(x, &) =", x, &, &)
and define a formal power series in ¢t by
(2.6) p(t; x, $)=§jot"m(x, §).

Remark. < is independent of (y, ).

Theorem 1. The formal series p(t; x, &) is a formal symbol of
order at most 1—0 defined in 2 so that
2.7 exp:p(t;x,§):=:expq(t;x,8):
holds in EF.

Let 2 be a real number such that 0<<2<1. Then we have the fol-
lowing

Theorem 2. If q,(x, &) is of order at most j+1)A—j (=0,1,2,--.),
then p,(x, &) is of order at most (k+1)A—k (k=0,1,2, --.).

3. Invertibility. As an application of Theorem 1, we obtain
the following theorem of invertibility for operators of infinite order,
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which is a generalization of Theorem 5 in [1]:

Theorem 3. Let P(x,&) be a symbol defined in a conic open
neitghborhood of z* e T*X. If P(x, &) is invertible as a symbol, that
18, 1/P(x, &) is also a symbol defined near &*, then :P(x, €): is invertible
n Cf.

4. Outline of the proof of Theorem 1. It follows from Theorem
2 in [2] that, if p(t; , &)= t/p,(x, &) is given, then q(t; x, &) satisfy-
ing (2.7) is constructed as follows: Let us introduce {v{)(z,y, & 7)}
and {g{"(x, &)} by

(4'1) E?())=pl(x) ‘SE)’ l=0, 1, 2’ Tty
“.2) ¥vi=0, j=1,2,.-.; 1=0,1,2,...,
k
4.3) gV (x, €)~~y-— ;}) Yo, x, &, &),
1 L=
“.4) %u—k—T( ¢ 0,00 Z Z 020,975 (v, 77))-
P e
Then q(t; =, &)= 7, t*q.(x, &) is obtained by
k+1
4.5) qx(x, ~é’$)=Z.1 qi”(, §).
=

If we can solve {p,(x, &)} from {g,(z, &)} conversely by (4.1)-(4.5), then

p(t; x, &)=2 t'p,(x, &) satisfies, at least formally, (2.7) for given

q(t;x,8=2 t'q,(x,£). Such procedure can be done by eliminating
’s from (4.3)-(4.5). Then we have (2.1)-(2.5).
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