12. Random Media and Quasi-Classical Limit of Schrödinger Operator

By Shin OZAWA

Department of Mathematics, University of Tokyo (Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1984)

In the present note we consider a mathematical problem concerning random media. We consider a bounded domain Ω in \mathbb{R}^3 with smooth boundary Γ . We put $B(\varepsilon; w) = \{x \in \mathbb{R}^3; |x-w| < \varepsilon\}$. Fix $\beta \ge 1$. Let $0 < \mu_1(\varepsilon; w(m)) \le \mu_2(\varepsilon; w(m)) \le \cdots$ be the eigenvalues of $-\Delta$ (= -div grad) in $\Omega_{\varepsilon, w(m)} = \Omega \setminus \bigcup_{i=1}^{\tilde{m}} B(\varepsilon; w_i^{(m)})$ under the Dirichlet condition on its boundary. Here \tilde{m} denotes the largest integer which does not exceed m^β , and w(m) denotes the set of \tilde{m} -points $\{w_i^{(m)}\}_{i=1}^{\tilde{m}} \in \Omega^{\tilde{m}}$. Let V(x) > 0 be C^1 -class function on $\overline{\Omega}$ satisfying

$$\int_{a} V(x) dx = 1.$$

We consider Ω as the probability space with the probability density V(x)dx. Let $\Omega^{\tilde{m}} = \prod_{i=1}^{\tilde{m}} \Omega$ be the probability space with the product measure. The following result which is an elaboration of M. Kac's theorem (Kac [3]) was given in Ozawa [4].

Theorem A. Assume that $\beta = 1$. Fix $\alpha > 0$ and k. Then,

 $\lim_{m\to\infty} \boldsymbol{P}(w(m) \in \Omega^{\tilde{m}}; m^{\delta} | \mu_k(\alpha/m; w(m)) - \mu_k^{\nu} | < \varepsilon) = 1$

holds for any $\varepsilon > 0$ and $\delta \in [0, 1/4)$. Here μ_k^{ν} denotes the k^{th} eigenvalue of $-\varDelta + 4\pi\alpha V(x)$ in Ω under the Dirichlet condition on Γ .

In this paper we study the case $\beta > 1$. In this case the sum of the radii of \tilde{m} -balls $B(\alpha/m; w_i^{(m)})$, $i=1, \dots, \tilde{m}$, tends to ∞ as $m \to \infty$. We see by the argument in Rauch-Taylor [9] that $\mu_k(\alpha/m; w(m)) \to \infty$ if $\beta > 1$, V(x) > 0 and

$$\lim_{m \to \infty} \tilde{m}^{-1} \sum_{i=1}^{\tilde{m}} f(w_i^{(m)}) = \int_{\mathcal{Q}} f(x) V(x) dx$$

for any fixed $f \in L^{\infty}(\Omega)$. We call the case $\beta > 1$, V(x) > 0 to be the solidifying case following Rauch-Taylor.

The aim of this paper is to give the following:

Theorem 1. Assume that $\beta \in [1, 9/8)$ and V(x) > 0. Fix $\alpha > 0$ and k. Then, there exists a constant $\delta(\beta) > 0$ independent of m such that

 $\lim_{m\to\infty} P(w(m) \in \Omega^{\bar{m}}; m^{\delta'-(\beta-1)} | \mu_k(\alpha/m; w(m)) - \mu_{k,m}^{\nu}| < \varepsilon) = 1$ holds for any $\varepsilon > 0$ and $\delta' \in [0, \delta(\beta))$. Here $\mu_{k,m}^{\nu}$ denotes the k^{th} eigenvalue of $-\varDelta + 4\pi\alpha \tilde{m}m^{-1}V(x)$ in Ω under the Dirichlet condition on Γ .

Remark. There exist constants C' and C'' such that $C' < m^{-(\beta-1)} \mu_{k,m}^{V} < C''$ holds.

S. OZAWA

Readers may refer to Papanicolaou-Varadhan [7], [8] Simon [10], Bensoussan-Lions-Papanicolaou [1], Huruslov-Marchenko [2], Ozawa [5], [6] and the literatures cited there, for related topics.

We give a sketch of our proof of Theorem 1. Fix $\beta \in (1, 3)$. We consider the following condition $(D-0)_m$, $(D-\infty)_m$ on w(m).

 $(D-0)_m$: Assume that $\Omega \setminus \overline{\bigcup_{i=1}^m B(\alpha/m; w_i^{(m)})}$ is divided into the connected components

$$\omega_1(w(m)), \cdots, \omega_{q(w(m))}(w(m)).$$

Then, g(w(m))=1 or

 $\max_{2 \le s \le g(w(m))} \operatorname{diam} \omega_{s(w(m))}(w(m)) \le m^{-1} \log m$ holds. Here diam Z denotes the diameter of the set Z.

 $(D-\infty)_m$: Take an arbitrary connected closed subset \mathcal{R}_m of Γ satisfying diam $\mathcal{R}_m \geq 2m^{-1} \log m$. Then

 $\mathfrak{R}_m \setminus \overline{\bigcup_{i=1}^{\tilde{m}} B(\alpha/m; w_i^{(m)})} \neq \phi.$

We can easily get the following:

 $\lim_{m\to\infty} \mathbf{P}(w(m) \in \Omega^{\tilde{m}}; w(m) \text{ satisfies } (D-0)_m, (D-\infty)_m) = 1.$

We put $r > \beta - 1$. We abbreviate the largest integer which does not exceed m^{β} as m'. We put $m'' = (m')^{1/2}$. Hereafter we always assume that w(m) satisfies $(D-0)_m$, $(D-\infty)_m$. We abbreviate $\omega_1(w(m))$ as ω for the sake of simplicity. Let $G_{(m')}(x, y; w(m))$ be the Green's function of $\Delta - m'$ in ω under the Dirichlet condition on its boundary satisfying

$$\begin{array}{ll} (\varDelta_x - m')G_{(m')}(x,y\,;\,w(m)) = -\delta(x-y), & x,y \in \omega \\ & G_{(m')}(x,y\,;\,w(m)) = 0, & x \in \partial \omega. \end{array}$$

Let $G_{(m')}(x,y)$ be the Green's function of $\varDelta - m'$ in \varOmega satisfying

$$(\mathcal{A}_x - m')G_{(m')}(x, y) = -\delta(x - y), \qquad x, y \in \Omega \ G_{(m')}(x, y) = 0, \qquad x \in \Gamma.$$

From now on we abbreviate $G_{(m')}(x, y)$ as G(x, y). We introduce the following integral kernel function: We abbreviate $w_i^{(m)}$ as w_i for the sake of simplicity.

$$\begin{split} h_{(m')}(x, y ; w(m)) &= G(x, y) - (4\pi\alpha/m) e^{m''\alpha/m} \sum_{i=1}^{\tilde{m}} G(x, w_i) G(w_i, y) \\ &+ \sum_{s=2}^{m^*} (-4\pi\alpha/m)^s e^{m''\alphas/m} \sum_{(s)} G(x, w_{i_1}) G(w_{i_1}, w_{i_2}) \\ &\cdots G(w_{i_{s-1}}, w_{i_s}) G(w_{i_s}, y). \end{split}$$

Here $m^* = (\log m)^2$ and $m'' = (m')^{1/2}$. Here the indices (i_1, i_2, \dots, i_s) in $\sum_{(s)}$ run over all $1 \le i_1, \dots, i_s \le \tilde{m}$ satisfying $i_1 \ne i_2, i_2 \ne i_3, \dots, i_{s-1} \ne i_s$. An essential key to Theorem 1 is the fact that $h_{(m')}(x, y; w(m))$, when we consider it as an integral kernel function on $\omega \times \omega$, is a nice approximation of $G_{(m')}(x, y; w(m))$ in a rough sense, if $\beta - 1$ is small. By a probabilistic consideration we view that $h_{(m')}(x, y; w(m))$, when we consider it as an integral kernel function on $\Omega \times \Omega$, is a nice approximation of the integral kernel function of $(-\Delta + m' + 4\pi\alpha \tilde{m}m^{-1}V(x))^{-1}$ in a rough sense. Along this line we get Theorem 1. Of course we need hard and long calculations to obtain our result.

References

- A. Bensoussan, J. L. Lions, and G. C. Papanicolaou: Asymptotic Methods in Periodic Structures. North-Holland, Amsterdam (1978).
- [2] E. Ja. Huruslov and V. A. Marchenko: Boundary Value Problem in Regions with Fine Grained Boundaries. Kiev (1974) (in Russian).
- [3] M. Kac: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. Math., 4, 511-538 (1974).
- [4] S. Ozawa: On an elaboration of M. Kac's theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles. Commun. Math. Phys., 91, 473-487 (1983).
- [5] ——: Spectra of domains with small spherical Neumann boundary. J.
 Fac. Sci. Univ. Tokyo., 30, 259–277 (1983).
- [6] ——: A shape of eigenfunction of the Laplacian under singular variation of domains II (preprint).
- [7] G. C. Papanicolaou and S. R. S. Varadhan: Diffusion in region with many small holes. Lect. Notes in Control and Information. vol. 75, Springer, Berlin, Heidelberg, New York (1980).
- [8] ——: Boundary value problems with rapidly oscillating random coefficients. Colloquia Mathematica Societis Janos Bolyai 27, Random Fields. vol. II, pp. 835–873. North-Holland, Amsterdam (1981).
- [9] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).
- [10] B. Simon: Functional Integration and Quantum Physics. Academic Press (1979).