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1. Prime sets. We say that a set P is a "prime set" if P is a
countable infinite set having a real valued "norm function" N" P--.R
satisfying the following" (1) N(p)>1 for all p e P, and (2) N(p,)-+oo as
i--oo for an (i.e., any) ordering P---{p, p2, ...). Put (t, P)= #(p e P;
N(p)<=t} for t>0 where denotes the cardinality. Then, (2) is equiva-
lent to that z(t, P) is finite for each t>0. We define d(P)-inf {d>0;
] N(p)-<oo). Then O<=d(P)<=oo, and we have

d(P)--lim sup log u(t, P)
log t

We are exclusively interested in the case of finite d(P), and we define
the zeta function of P by {(s, P)= [I (1--N(P)-)- for a variable s in
the complex numbers C. This infinite product (an Euler product over
P) converges absolutely in Re (s)> d(P). When 0< d(P) oo, by de-
fining another norm function by N(p)=N(p), we can normalize
(P, N) to (P, N) which satisfies d(P)= 1.

Example 1. Let A be a commutative finitely generated Z-algebra,
where Z denotes the ring of rational integers. Let M(A) be the cate-
gory of A-modules, and let P=P(M(A))=P(A) be the "set" of all iso-
morphism classes of simple objects of M(A). In this case P is actually
a set and is consisting of isomorphism classes of simple A-modules.
For each p e P, let N(p)-p be the cardinality of p as a set. (Each p
is a finite set.) Then P is a prime set with the (integer valued) norm
function N, and d(P) is equal to the Krull dimension dim (A) of A.
In particular, when A--Z, (s, P(Ab)) is equal to the Riemann zeta
function (s), where Ab--M(Z) is the category of abelian groups.
(Note that P(Ab)is the set of isomorphism classes of simple abelian
groups, and that a simple abelian group is a finite cyclic group of
prime order.) In other words, the Riemann zeta function is the zeta
function of the category Ab. In general, we expect that"

2d(P)

Z(s, P)={(s, P)F(s, P)= l-I Sin(s,
m=0

with the gamma factor F(s, P), where Z(s, P) is holomorphic on C
having the functional equation for sm--s with all zeros on Re (s)
-m/2. When {(s,P) is meromorphic on C, we have an "explicit
formula" attached to (s, P) in the form , M(p)-- W(2), where 2



336 N. KUROKAWA [Vol. 60 (A),

runs over zeros and poles of (s, P). Hence, for P--(P,...P)with
P--P(A), we have a "multiple explicit formula" , M(1D=, W(),
where/--- (p, -, Pr) and ,-- (, ., L). Specializing this formula
we have a "multiple zeta function" of order being equal to the sum of
orders o (s, P), which has a "multiple Euler product" expression..
This zeta function is considered to correspond to a multiple category.
(We remark that in this example the commutativity of A is not es-
sential, and we have an analogous example in the non-commutative
case. also.)

Example 2. Let C be a category with a zero (or "null")object 0.
We assume that C is a concrete category in the sense that C is a sub-
category of Set (the category of sets). We say that a non-zero object
X of C is simple if each morphism (or "arrow") f" X--Y is zero or
monic or any object Y. (If C is abelian, this condition is equivalent
to that X has only two subobjects 0 and X.) We say that X is a finite
simple object if X is a simple object with finite cardinality N(X)--X
as a set. (More generally, we may define a concrete category as a
pair (C, F) of a category C and a aithful functor F" C--->et; then
N(X)--F(X).) We denote by P--P(C) the class (hopefully a set) of
all isomorphism classes of finite simple objects of C. The above
Example 1 is the case of C--M(A), where the finiteness is satisfied
automatically. As a non-abelian example, let C--Grl be the category
o groups. Then P--P(Gr/) is the set o isomorphism classes of finite
simple groups, which is a prime set with d(P)--1, and (s, P(Grp)) is
holomorphic in Re (s)l/3 except for a simple pole at s--1. (Here
we use the classification of finite simple groups.) We remark that as
a weaker candidate for "primes" we may take the class P’(C) of all
isomorphism classes of finite "indecomposable objects" instead of
finite simple objects in some cases such as M(A) and Gr/, but the
associated zeta functions are not so good in general; for example
(s, P’(,4b)) is meromorphic in Re (s)0 with the natural boundary
Re (s)--O. Moreover d(P’(GrlD)--o. We note that the category Set,
of pointed sets is also a non-abelian example, where we have
(s, P(et.))-(1-2-’)- and (s, P’(et.))--(s).

txample :. Let X be a scheme of finite type over Spec (Z). Let
P=P(X) be the set of all closed points of X. Then P is a prime set
with the usual norm function, and we have d(P)=dim (X). If X
--Spec (A) with A being as in Example 1, then P(A) and P(X) are
identified (norm-preserving) since each p e P(A) is written as p=A/
for a maximal ideal m of A.

2. tuler products. We introduce L-functions. Let P be a
prime set with finite d(P). Let G be a topological group, and Conj (G)
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be the set of all conjugacy classes of G. Let a" P-+Conj (G) be a
map. We call such a triple E=(P, G, ) an Euler datum. We define
E=(P, GR, ) by (p)=(a(p), log N(p)). We denote by Irr (G) the
set of all equivalence classes of irreducible finite dimensional continu-
ous unitary representations of G, and denote by R(G) the ring of
virtual characters generated (spanned)over Z by {tr (p);p e Irr (G)},
where tr (p) denotes the trace of p. Let T be an indeterminate,
and H(T) be a polynomial belonging to I+T.R(G)[T]. For each
c e Conj (G) we denote by He(T) the polynomial belonging to 1 + T. C[T]
obtained from H(T) by taking values at c of the coefficients. (Remark
that elements of Ru(G) are class iunctions on G.) We say that H(T) is
unitary if ior each c e Conj (G) there is a unitary matrix M such that
Hc(T)-- det (1--MT) or H(T)= 1. We define

L(s, E, H)= V[ H()(N(P)-8) -1,
P

which is (at least) meromorphic (not necessarily holomorphic) in Re (s)
>d(P). We say that E--(P, G, a) is complete if the following hold"
(1) if H(T) is unitary then L(s, E, H) is meromorphic on C, and (2) if
H(T) is not unitary then L(s, E, H) is meromorphic in Re (s)0 with
the. natural boundary Re (s)=0. Note that if E is complete then E is
also. We have a general condition making E (and E) complete, which
is described by properties of L(s, E, p) L(s, E, D) or p e Irr (G)
where D,(T)=det (1--pT). (In 3 we note an example.) We note the
ollowing point. Let P be a prime set, and let N(P)=(N1, N, ...} be
the image of N, where IN<N.... We denote by m the multi-
plicity of N defined by m={p e P N(p)=N}=z(N, P)--(N_, P).
(We have N-.oo as i--c, and l=<moo.) We define"

/(P) lim sup _log___m____.
log N

Then we have O<:[(P)<:d(P). (This is shown directly; it follows also
irom m<=(N, P) and the previous expression for d(P).) For our
applications the case where p(P)< d(P) is important.

Remark 1o An Euler datum E--(P, G, )is especially important
if G is a "universal (or, generic) fundamental group" in a suitable
sense.. Note that for Examples 1-3 of 1 we have "fundamental
groups" in the usual sense. As abelian analogues, we have
Grothendieck (or K-) groups. For P=P(C) as in 1, such a universal
group G=G(C) would be crucial when we study analyticity, zeros,
poles, and special values of zeta (and L-) functions in connection with
spectral analysis on C; symbolically Zet--Det.

:t. ArtinHecke t),pe L.functions. Let F be a finite extension
field of the rational number field Q. We denote by O the integer
ring. Let P=P(O.) be as in Example 1 (or 3) which is identified with
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the set of all maximal ideals of Or. (In this case "maximal" is equiva-
lent to "non-zero prime".) Then we have d(P)--1 and/(P)-O. We
denote by G--W(F/F) the absolute Weil group of F. Let a" P
-.Conj (G) be any map such that (p) contains a Frobenius element at
(or, over) p (i.e., at m if p--O/m) for each p e P. (Our result is inde-
pendent o the choice of a.) Let E=(P, G, ). Then we have

Theorem 1. E is complete.
This result was proved in a preprint "On the meromorphy of

Euler products. Part II. Generalizations" cited in [1] and [2]. (In
"Part III. Modifications", more general cases where representations
were not necessarily unitary were treated; cf. [1, Remark 4].) That
proof (which is rather long because of various complications) will be
published in a series of papers, where we treat simultaneously other
kinds of Euler products containing Euler products of Selberg type.
As a corollary of Theorem 1, we have a solution of Linnik’s problem"
Theorem 1 of [2] holds if Z are unitary GrSssencharacters without
the assumption o finiteness of orders. (Cf. [2, Remark 3].)

Remark 2. An analogue of Linnik’s problem is extended to a
general fibre product E ... E o Euler data in a suitable sense.
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