92. Remark on Nilpotency of Derivations

By Lung O. Chung,*) Yuji Kobayashi**) and Jiang Luh*)
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 1984)

Let R be a ring and ∂ be a derivation of R. ∂ is called *nilpotent* if $\partial^n R = 0$ for some positive integer n. The nilpotency of ∂ is the smallest such n. Let R be a semiprime ring. It was proven in [1] and [2] that the nilpotency of ∂ is power of 2 if R is of characteristic 2, and it is an odd number if R is 2-torsion free. The results are best possible when the characteristic is 2 or 0. When the characteristic is an odd prime, the results can be sharpened. In this note we give a precise result in case of positive characteristic and complete the study of nilpotency of derivations in semiprime rings.

Theorem. Let R be a semiprime ring of prime characteristic p and ∂ be a nilpotent derivation of R. Then the nilpotency n of ∂ is of the following form:

(*)
$$n = \alpha_L P^L + \alpha_{L+1} P^{L+1} + \cdots + \alpha_M P^M$$
, where $0 \le L \le M$, α_i are nonnegative integers less than p , α_L is odd and α_{L+1} , \cdots , α_M are even.

Proof. When p=2, the theorem asserts that n is a power of 2, this agrees with the results in [2]. Let $p \ge 3$ and write $n=\beta_0+\beta_1 p+\cdots+\beta_M p^M$ with $0 \le \beta_i < p$, $0 \le M$ and $\beta_M \ne 0$. Let L be the greatest among the i's such that β_i is odd. Let $D=\partial^{P^L}$, then D is also a derivation of R and $D^i=0$, where $l=1+\beta_L+\beta_{L+1}p+\cdots+\beta_M p^{M-L}$. Since l is even, $\partial^{p^L(l-1)}=D^{l-1}=0$ by the main theorem in [1]. It follows that $n \le p^L(l-1)=\beta_L p^L+\beta_{L+1}p^{L+1}+\cdots+\beta_M p^M$.

This implies $n = \beta_L p^L + \beta_{L+1} p^{L+1} + \cdots + \beta_M p^M$ and β_L is odd and β_{L+1}, \cdots , β_M are even, as desired.

The theorem is best possible in the following sense: For any number n of the form (*), there exist a prime ring R of characteristic p and a nilpotent derivation ∂ of R with nilpotency n. In fact, let $m=\lfloor n/2\rfloor+1$, where $\lfloor n/2\rfloor$ is the greatest integer not exceeding n/2. Let R be the $m\times m$ matrix ring over a field of characteristic p and let $A=E_{12}+E_{23}+\cdots+E_{m-1,m}$, where E_{ij} is the matrix with 1 at (i,j)-position and 0 elsewhere. Let $\partial=ad_A$ be the inner derivation induced by A. We claim that ∂ has nilpotency n. If p is odd, then n=2m-1. Since $A^m=0$, we have $\partial^n=0$. On the other hand ∂^{n-1} is not zero,

^{*} Department of Mathematics, North Carolina State University. Raleigh, North Carolina 27695-8205, USA.

^{**)} Faculty of Education, Tokushima University. Tokushima 770, Japan.

because $\partial^{n-1}X = (-1)^{m-1} \binom{n-1}{m-1} A^{m-1}XA^{m-1}$ for any $X \in R$ and $\binom{n-1}{m-1} \not\equiv 0 \pmod{p}$ by [1, Lemma 3]. If p=2, then n=2m-2. We have $\partial^n X = (-1)^{m-1} \binom{n}{m-1} A^{m-1}XA^{m-1} = 0$ for any $X \in R$, because $\binom{n}{m-1}$ is even. Since $A^{m-1} \neq 0$, there is $Y \in R$ such that $A^{m-1}YA^{m-1} \neq 0$. Hence $\partial^{n-1}(AY) = (-1)^{m-1} \binom{n-1}{m-1} A^{m-1}YA^{m-1} \neq 0$, because $\binom{n-1}{m-1}$ is odd. In either case the nilpotency of ∂ is n.

More generally, the argument above combined with Theorem shows

Corollary 1. Let R be a semiprime ring of prime characteristic p. Let a be a nilpotent element in R of nilpotency m. Then the nilpotency of the inner derivation induced by a is the greatest integer of the form (*) not exceeding 2m-1.

If the characteristic q of a semiprime ring R is positive but not necessarily prime, then q is a product of distinct primes p_1, p_2, \cdots, p_r and $R = R_1 \oplus R_2 \oplus \cdots \oplus R_r$, where $R_i = \{x \in R \mid p_i x = 0\}$. R_i is a semiprime ring of prime characteristic p_i and $\partial R_i \subseteq R_i$ for any derivation ∂ of R. Therefore, the nilpotency of ∂ is equal to the maximum of the nilpotencies of the restrictions of ∂ to R_i $(i=1,2,\cdots,r)$. Hence by Theorem we have

Corollary 2. Let R be a semiprime ring of positive characteristic q. Then the nilpotency of a nilpotent derivation of R is of the form (*) for some prime divisor p of q.

References

- [1] L. O. Chung and J. Luh: Nilpotency of derivations. Canad. Math. Bull., 26, 341-346 (1983).
- [2] —: Nilpotency of derivations. II. Proc. Amer. Math. Soc., 91, 357-358 (1984).