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Abstract. We denote the set of recurrent functions and the set
of distal functions by RE(T, Rn) and D(T, Rn), respectively. Then it
is known ([1])that D(T, R) is a linear space, but that RE(T, R) is
not a linear space. The purpose of this paper is to strengthen the
above results. We show that, if f e RE(T, R) D(T, Rn), then there
exist g, ge RE(T, Rn) in its hull such that g--ge RE(T, Rn).

Let T denote real numbers R or integers Z. Let X be a metric
space with the metric dx. A continuous mapping " X T--X is called
a flow on (a phase space) X if z satisfies the following two conditions"
1 ) (x, O)=x for x X.
2 ) z(z(x, t), s)=z(x, t + s) for x e X and t, s e T.
The orbit through x e X is denoted by C,(x). McX is called an in-
variant set of if C(x)cM for x e M. The restriction of to an
invariant set McX is denoted by zlM. A non-empty compact invar-
iant set M of is called a minimal set if we have C(x)=M for every
x e M, where C--(X) is closure of C(x). If X is itself a minimal set of
z, we say that z is a minimal flow on X. A flow z on X is said to be
equicontinuous if for each 0 there exists a 30 such that dz(z(x, t),
z(y, t)) holds for x, y e X with d(x, y) and for t
on X said to be distal if infer {dx(z(x, t), z(y, t))}0 for each pair of
distinct points x, y e X. A point x e X is called an almost automorphic
point of z if for each sequence {t)c T there exists a subsequence
C{tn} such that (x, tnk)--y e X and z(y,--tk)-x as k-oo hold. A
minimal flow is said to be almost automorphic if it contains an almost
automorphic point. It is well known that every equicontinuous
minimal flow on a compact metric space is distal and almost auto-
morphic. Let z and p be flows on X and Y, respectively. A con-
tinuous mapping h of X into Y is called a homomorphism from to p
if we have h((x, t))-p(h(x), t) for (x, t) e X T.

Proposition 1. Let z be a flow on a compact metric space X. If
x e X is an almost automorphic point, then C(x) is a minimal set of

Proof. If C(x) is not minimal, then there exists a minimal set
McC,(X-) such that x e M. Let y e M. Then there exists a sequence
{t}cT such that =(x, t)--y as n-+oo. Since x is an almost auto-
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morphic point o , (y, -t)--x as k--c holds or some subsequence
o {tn}. But =(y, --tn) M or all k, and hence we have x e M. This.
is a cont.radiction. Hence C(x) is a minimal set of

Proposition 2. Let be a minimal flow on a compact metric
space X. If is almost automorphic but not equicontinuous, then
is not distal.

Proof. I is an almost automorphic, then there exists an equi-
continuous minimal flow p on Y and a homomorphism h from
such that h-(h(xo))={Xo} or some x0 e X (see [3] or [2]). Since is not
equicontinuous, there exists x e X such that h(h(x)):{x}. If
h-l(h(x)) (x’-x), then we have inter [dx((x, t), (x’, t))}--0. This
implies that is not distal.

Let
C(T, Rn)--{f T-R; f is continuous}

with compact-open topology. Then C(T, R) is a metric space.. We
denote a metric o it by d. Define a flow on C(T, Rn) by v(f, t)=ft
or (f,t) eC(T,R)T, where ft(s)=f(t+s) or seT. It is well
known that it is well defined. The restriction o ] to the hull H(f)
-{ft}er of f e C(T,Rn) by j. f e C(T, R) is said to be
(1) recurrent if H(f) is compact and ] is minimal,
(2) almost periodic i H(f) is compact, and ] is equicntinuous,
(3) distal if H(f) is compact and ] is distal, and
(4) almost automorphic if H(f) is compact, and f is almost auta-
morphic point e .

Proposition :. Let be a flow on a.compact metric space X, and.
q)" X--R a continuous function. Define a mapping h from X into
C(T,R) by h(x)=q((x, .)) for x e X. Then h is a homomorphism.

from to 7.
Proof. Easy.
We denote the sets of recurrent. uctions, almost periodic unc-

tions, distal unctions and almost automorphic unctions by RE(T, R),,
AP(T, R), D(T, R) and AA(T, Rn), respectively.

Theorem. If f e RE(T, R)-D(T, R), then there exist g, g
H(f) such that g--g RE(T, R).

Proof. Since f is not distal, there exist g, g H(f) (g:g) such.
that infe r {d(g, g)} =0. We cvnsider the product flow ] ] on H(f)’
H(y) by

]j ((h1, h), t)= (h, h)
or h, h e H(f) and t e T. Define " H(f)-R by ’(g)=g(0) or
g e H(f). Then ’ is continuous on H(f). Define a mapping " H(f).
H(f)-+R by q(h, h)=’(h)-’(h) for (h, h) H(f) H(y). Then

) is also continuous on H(f)H(.(). By Proposition 3, induces a
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homomorphism h rom 1 1 to 1. By the definition
h(h!, h2)(t)=(1 ]((h1, h2), t)))

q(h,.h) q (ht)-- q
=h(t)--h(t)

or (h, h) e H(f) H(f) and t e T. Since ine r [(g, g)}=0, there exist
a sequence {tn} T and g e H(f) such that gtg and gtg as n.
Since every orbit closure is invariant and ((g, g)) (g, g), we
have ((g, g )), where is the diagonal set of H(f)H(f). By
continuity of h, we have

(g g ).
Hence C(g’-g) contains the 0-function k (i.e. k(t)--0), because the
image of every element of A by h is k. Hence

_
is not minimal.

This implies that g’--g e RE(T, R).
Example. We consider the function f on Z defined by

f(n)-sgn (cos (2an))= { 1 cos (2an)
1 cos (2an)<0

for n 6 Z, where a is an irrational number. Then f is almost auto-
morphic but not equicontinuous (see [3] p 720). Hence f is not
distal by Proposition 2. H(f) contains following functions" Let
cos (2(ma+x))=0 for some m Z and some x [0, 1). Put

f+(n)= { n=m
gn (cos (2(na+ x))) n

and

f (n) {-1sgn (cos (2(nc/ x)))
Then fx/, fx-, e H(f), and hence f:/’, fx-, RE(Z, R).
definition o fx/, and f we have

(fx+_fx_)(n)= {2 n=m
0 nm.

Hence f+--f- RE(Z, R).

By the
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