71. Teichmüller Spaces of Seifert Fibered Manifolds with Infinite π_1

By Ken-ichi Ohshika

Department of Mathematics, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1984)

It is known that geometric structure which 3-manifolds can possess is one of H^3 , E^3 , S^3 , $H^2 \times R$, $S^2 \times R$, $S\tilde{L}_2$, Nil, Sol, ([9]). Teichmüller space of a geometric manifold M is the set of all metric (of the geometry) on M factored by isotopy. The topology is the quotient of C^{∞} -topology. For H^3 , if M is a Haken 3-manifold, the Teichmüller space is trivial by Mostow's rigidity theorem. In this note we determine Teichmüller spaces of geometric 3-manifolds modelled on $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil, $S^2 \times R$. We denote the Teichmüller space of M by $\mathcal{I}(M)$. Throughout this note M is compact and orientable.

§ 1. Teichmüller spaces of 2-orbifolds. As geometric manifolds modelled on $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil, $S^2 \times R$ are Seifert fibered manifolds, we consider Teichmüller spaces of base orbifolds first.

Theorem 1. Let O be a compact hyperbolic 2-orbifold (possibly nonorientable with geodesic boundaries) with k cone points and without other singularities. Then $\mathfrak{T}(O) \cong \mathbb{R}^{-3\chi(X)+2k}$ where X denotes the underlying space of O.

The theorem above appears in Thurston [8] with the sketch of the proof in the case that *O* is closed orientable.

Theorem 2. The Teichmüller spaces of Euclidean 2-orbifolds are as follows:

O(2-orbifold)	$\mathcal{I}(O)$
$Torus, S^2 with 4 cone points$	R^3
Annulus, Möbius band, Klein bottle	R^2
D^2 with 2 cone points, P^2 with 2 cone points	R^2
S^2 with 3 cone points	R

§ 2. Teichmüller spaces of geometric manifolds modelled on $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil.

Lemma 1 (Waldhausen [10]). Let M be a Haken Seifert fibered manifold which is neither of $S^1 \times S^1 \times I$, $S^1 \times S^1 \times S^1$, the twisted I-bundle over Klein bottle, the double of the twisted I-bundle over Klein bottle, solid torus. Then the fibration of M is unique up to isotopy.

Lemma 2 (P. Scott [7]). Let M be a Seifert fibered manifold whose base orbifold is $S^2(p, q, r)$ where $p, q \ge 4$. Let $f: M \rightarrow M$ be a homeomorphism homotopic to the identity. Then f is isotopic to the identity.

Using this lemma we obtain the corollary below.

Corollary. Let M be a manifold as in Lemma 2. Then the fibration of M is unique up to isotopy.

Using the results of § 1, Lemma 1, and Corollary above, we can prove theorems below. The keypoint of the proof is that there is a natural fibration $\mathcal{I}(M) \rightarrow \mathcal{I}(O)$, where O denotes the base orbifold of M.

Theorem 3. Let M be a geometric 3-manifold modelled on $H^2 \times \mathbb{R}$, whose base orbifold is neither $S^2(2,3,r)$ nor $S^2(3,3,r)$. Let X be the underlying space of the base orbifold. Then $T(M) \cong \mathbb{R}^{3-4\chi(X)+2k}$ if X is closed, and $\mathfrak{I}(M) \cong \mathbb{R}^{2-4\chi(X)+2k}$ if X is with boundary, where k is the number of singular fibers.

Theorem 4. Let M be a geometric 3-manifold modelled on $S\tilde{L}_2$, whose base orbifold is neither $S^2(2,3,r)$ nor $S^2(3,3,r)$. Then $\mathfrak{T}(M) \cong \mathbf{R}^{2-4\chi(X)+2k}$.

Theorem 5. Let M be a geometric 3-manifold modelled on E^3 , whose base orbifold is neither $S^2(2,3,6)$ nor $S^2(3,3,3)$. We consider only metrics whose volume is equal to 1. Then the Teichmüller space is as follows:

$Base\ orbifold$	$\mathfrak{T}(M)$
Torus	$oldsymbol{R}^5$
<i>Klein bottle</i> , $S^{2}(2, 2, 2, 2)$	R^3
Annulus	R^3
$S^2(4,4,2)$	\boldsymbol{R}
$D^2(2,2)$, Möbius band	$R\!\!\!\!/^2$
$P^{2}(2,2)$	R^3

Theorem 6. Let M be a geometric 3-manifold modelled on Nil, whose base orbifold is neither $S^2(2,3,6)$ nor $S^2(3,3,3)$. Then the Teichmüller space is as follows.

$Base\ orbifold$	$\mathfrak{T}(M)$
Torus	R^5
Klein bottle	R^4
$S^2(2,2,2,2)$	R^3
$S^{2}(4,4,2)$	\boldsymbol{R}
$P^{2}(2,2)$	R^3

Let M be a geometric manifold modelled on one of $H^2 \times R$, $S\tilde{L}_2$, E^3 , Nil. Let S be the set of isotopy classes of simple closed curves and essential simple proper arcs. R^S denotes the set of all functions from S to R with weak topology. Let $\iota_*: \mathcal{I}(M) \to R^S$ be a map such that for $m \in \mathcal{I}(M)$ s-coordinate of $\iota_*(m)$ is the logarithm of geodesic length of s on (M, m).

Theorem 7. $\iota_*: \mathcal{I}(M) \to \mathbb{R}^s$ is a proper embedding.

§3. Teichmüller spaces of geometric manifolds modelled on

 $S^2 \times R$. A manifold with $S^2 \times R$ -geometry is one of $S^2 \times S^1$, $P^8 \sharp P^8$, $D^2 \times S^1$. $S^2 \times R$ geometry has a quite different character from other geometries. The natural fibration of $S^2 \times R$ by lines need not descend to a Seifert fibration of a geometric manifold. So there are two ways of thinking. One way is forgetting the Seifert fibration structure of M and defining the Teichmüller space to be all $S^2 \times R$ -structure on M up to isotopy. We denote this space by $\mathcal{I}(M)$. The other way is fixing Seifert invariants of M and defining the Teichmüller space to be the subset of $\mathcal{I}(M)$ such that the natural fibration by lines on $S^2 \times R$ descends to a Seifert fibration of M with the fixed Seifert invariants. We denote this space by $\mathcal{I}^*(M)$.

Using Laudenbach's theorems we can compute π_0 (Diff⁺ ($S^2 \times S^1$)), π_0 (Diff⁺ ($P^3 \sharp P^3$)), π_0 (Diff⁺ ($D^2 \times S^1$)). Using them we obtain the following theorems.

Theorem 8. Let M be a geometric 3-manifold modelled on $S^2 \times R$. Then $\mathcal{I}(M)$ is as follows:

M	$\mathfrak{T}(M)$
$S^{\scriptscriptstyle 2}{ imes}S^{\scriptscriptstyle 1}$	$S^3 \times R$
$P^3 \sharp P^3$	$S^3 \times R$
$S^{\scriptscriptstyle 1}{ imes}D^{\scriptscriptstyle 2}$	$R\!\!\!\!/^2$

Theorem 9. Let M be a geometric 3-manifold modelled on $S^2 \times R$. Fix Seifert invariants of M. Then $\mathfrak{I}(M)$ is as follows.

M	$\mathcal{I}^*(M)$
$S^{\scriptscriptstyle 2}{ imes}S^{\scriptscriptstyle 1}$	$R \times Z_2$
$P^3 \sharp P^3$	$R \times Z_2$
$D^{\scriptscriptstyle 2}{ imes}S^{\scriptscriptstyle 1}$	$R \times Z$

References

- [1] F. Bonahon: Difféotopies des espaces lenticulaire. Topology, 22, 305-314 (1983).
- [2] Fathi et al.: Travaux de Thurston sur les surfaces. Astérisque, 66-67 (1979).
- [3] W. Jaco: Lectures on three-manifold topology. A.M.S. (1980).
- [4] S. Kojima: A construction of geometric structures on Seifert fibered spaces (preprint).
- [5] F. Laudenbach: Topologie de la dimension trois (homotopie et isotopie).
 Astérisque, 12 (1974).
- [6] P. Scott: The geometries of 3-manifolds. Bull. London. Math. Soc., 15, 401-487 (1983).
- [7] —: Homotopic homeomorphism of Seifert fibered spaces. Lecture at Oberwofach (1983).
- [8] W. Thurston: The geometry and topology of 3-manifolds (preprint).
- [9] —: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. A.M.S., 6, 357-381 (1982).
- [10] F. Waldhausen: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II. Inv. Math., 4, 87-117 (1967).