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1. Introduction. Let L be a strictly elliptic partial differential
operator with measurable coefficients of the orm"

L=1 -x-(a )-- i,j=l
ij

where (a) is symmetric and b0. We assume that or each non-
empty compact subset K of R, there exists a constant 2=2(K) such
that

and

-1112- E aj(x)$g[[
i,j=l

b(x)2
or all x in K and $ in R. Then we can construct a unique minimal
diffusion process (Xt, , P)e by using the theory o Dirichlet spaces,
Fukushima [2] (see also Morrey [5]) where is the explosion time o
the process, i.e.. lim/()IX((o)l= + c i ((o) + c. One of the basic
problems or the diffusion processes is to. find conditions or conserva-
tiveness and explosion. Such conditions for one. dimensional diffusion
processes have been established by Feller [1] in connection with the
classification of boundary points. His conditions are given in terms
o the scale and speed measures. In multidimensional cases,
Hasminskii [3] has obtained sufficient conditions or conservativeness
and explosion or diffusion processes which can be constructed by
means o, Ira’s stochastic differential equations. Hasminskii’s idea
(see McKean [4]) can not be applied to our cases since the coefficients

a o the, above operator L are not necessarily smooth. However we
can use the theory o Dirichlet spaces to get conditions or conserva-
tiveness and explosion.

2. a.equilibrium potential and a.capacity (Fukushima [2]).
Let B be the closed unit ball (Ix]g l} in R and r0 the first hitting time
o B by the process X. The c-equilibrium potential e.(x) of B (o>0)
is defined by

co(x) Ex[e-=] for >0
[P[r0<] for c-- O.

For u, v in the space C(Bn) of infinitely differentiable, real valued
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functions with compact support, set

.(u,v)--- a Ou Ov
,-- x dx+o buvdx.

Denote the C.-closure of C(Rn) by .. (., .) or 0 is a Hilbert
space. It is also known that (Co, 0) is a Hilbert space if and only
X, is transient.

The a-capacity C.(B) o Bn is defined as follows. For a0,
C(B): in C(u, u).

ul Bn
For :0 and Xt being transient,

Co(B): in 0(u, u).
uo

ul Bn

Note that for each 0, e. e . and
C.(B) C.(e., e.)> 0.

Moreover, when X is transient, e0 e 0 and
Co(Bn) o(eo, eo)> 0.. Main results. Theorem 1. The following statements are

equivalent"
(1) X is conservative, i.e.P.[= +]=1 on R.
(2) For some 0

(3) For all >0

It should be remarked that in general we have

for every )0.
Theorem 2. If X is transient, then the limit of

ce(x)b(x)dx
R

as $ 0 exists and
when P.[5= + c]= 1 on R

lim.0 f ce.(x)b(x)dx e (0, Co(Bn)), when 0P.[5= /o]1 on R
=0, when P.[= + c]=0 on R.

To find sufficient conditions on coefficients a, b for conserva-
tiveness and explosion, define

A (r) [ (A(ra)a, a)da for r O,
Jsn-

B/(r)= sup {.(A(ra)a, a)

where A(x)=(a(x)),=,..., and da is the uniform measure on S
Theorem 3. (1) If for some
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exp{_ 2/- ds)
lira =0,
r/2+o ? s,_nA+(s)_,ds

then the process X is conservative.
(2) If

da r-(A(ra)-a, a) s=-b(sa)ds dr< +
sn-

wheve A(x)- is the invevse matrix of A(x), then the explosion is sure,
i.e.P.[< +]=1 on R.

The proof of Theorem 3 is based on estimates of some Dirichlet
integrals of e,. The details of the above results together with some
extensions will appear elsewhere.
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