67. Explosion Problems for Symmetric Diffusion Processes

By Kanji Ichihara

Department of Mathematics, College of General Education, Nagoya University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1984)

 \S 1. Introduction. Let L be a strictly elliptic partial differential operator with measurable coefficients of the form:

$$L = \frac{1}{b} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial}{\partial x_{j}} \right)$$

where (a_{ij}) is symmetric and b>0. We assume that for each non-empty compact subset K of \mathbb{R}^n , there exists a constant $\lambda=\lambda(K)$ such that

$$|\lambda^{-1}|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \leq \lambda |\xi|^2$$

and

$$b(x) \leq \lambda$$

for all x in K and ξ in \mathbb{R}^n . Then we can construct a unique minimal diffusion process $(X_t, \zeta, P_x)_{x \in \mathbb{R}^n}$ by using the theory of Dirichlet spaces, Fukushima [2] (see also Morrey [5]) where ζ is the explosion time of the process, i.e. $\lim_{t \nearrow \zeta(\omega)} |X_t(\omega)| = +\infty$ if $\zeta(\omega) < +\infty$. One of the basic problems for the diffusion processes is to find conditions for conservativeness and explosion. Such conditions for one dimensional diffusion processes have been established by Feller [1] in connection with the classification of boundary points. His conditions are given in terms of the scale and speed measures. In multidimensional cases, Hasminskii [3] has obtained sufficient conditions for conservativeness and explosion for diffusion processes which can be constructed by means of Itô's stochastic differential equations. Hasminskii's idea (see McKean [4]) can not be applied to our cases since the coefficients a_{ij} of the above operator L are not necessarily smooth. However we can use the theory of Dirichlet spaces to get conditions for conservativeness and explosion.

§ 2. α -equilibrium potential and α -capacity (Fukushima [2]). Let \mathbf{B}_n be the closed unit ball $\{|x| \leq 1\}$ in \mathbf{R}^n and τ_0 the first hitting time of \mathbf{B}_n by the process X_t . The α -equilibrium potential $e_a(x)$ of \mathbf{B}_n ($\alpha \geq 0$) is defined by

$$e_{\alpha}(x) = \begin{cases} E_x[e^{-\alpha \tau_0}] & \text{for } \alpha > 0 \\ P_x[\tau_0 < \zeta] & \text{for } \alpha = 0. \end{cases}$$

For u, v in the space $C_0^{\infty}(\mathbf{B}^n)$ of infinitely differentiable, real valued

functions with compact support, set

$$\mathcal{E}_{\alpha}(u,v) = \sum_{i,j=1}^{n} \int_{\mathbb{R}^{n}} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} dx + \alpha \int_{\mathbb{R}^{n}} buv dx.$$

Denote the \mathcal{E}_{α} -closure of $C_0^{\infty}(\mathbf{R}^n)$ by \mathcal{F}_{α} . $(\mathcal{E}_{\alpha}, \mathcal{F}_{\alpha})$ for $\alpha > 0$ is a Hilbert space. It is also known that $(\mathcal{E}_0, \mathcal{F}_0)$ is a Hilbert space if and only if X_t is transient.

The α -capacity $C_{\alpha}(\mathbf{B}_n)$ of \mathbf{B}_n is defined as follows. For $\alpha > 0$,

$$C_{\alpha}(\boldsymbol{B}_{n}) = \inf_{\substack{u \in \mathcal{I}_{\alpha} \\ u \ge 1 \text{ a.e. on } \boldsymbol{B}_{n}}} \mathcal{E}_{\alpha}(u, u)$$

For $\alpha = 0$ and X_t being transient,

$$C_0(\mathbf{\textit{B}}_n) = \inf_{\substack{u \in \mathfrak{T}_0 \ u \geq 1 ext{ a.e. on } \mathbf{\textit{B}}_n}} \mathcal{E}_0(u, u).$$

Note that for each $\alpha > 0$, $e_{\alpha} \in \mathcal{F}_{\alpha}$ and

$$C_{\alpha}(\mathbf{B}_{n}) = \mathcal{E}_{\alpha}(e_{\alpha}, e_{\alpha}) > 0.$$

Moreover, when X_t is transient, $e_0 \in \mathcal{F}_0$ and

$$C_0(\mathbf{B}_n) = \mathcal{E}_0(e_0, e_0) > 0.$$

- § 3. Main results. Theorem 1. The following statements are equivalent:
 - (1) X_t is conservative, i.e. $P[\zeta = +\infty] = 1$ on \mathbb{R}^n .
 - (2) For some $\alpha > 0$

$$\int_{\mathbb{R}^n}\alpha e_a(x)b(x)dx = C_a(\mathbf{B}_n).$$
 (3) For all $\alpha > 0$

$$\int_{\mathbf{R}^n} \alpha e_{\alpha}(x) b(x) dx = C_{\alpha}(\mathbf{B}_n).$$

It should be remarked that in general we have

$$\int_{\mathbf{R}^n} \alpha e_{\alpha}(x) b(x) dx \leq C_{\alpha}(\mathbf{B}_n)$$

for every $\alpha > 0$.

Theorem 2. If X_t is transient, then the limit of

$$\int_{\mathbf{R}^n} \alpha e_{\alpha}(x) b(x) dx$$

as $\alpha \downarrow 0$ exists and

$$\lim_{lpha\downarrow 0}\int_{m{R}^n}lpha e_lpha(x)b(x)dxegin{cases} =&C_0(m{B}_n), & when \ P[\zeta=+\infty]=1 & on \ m{R}^n \ e(0,C_0(m{B}_n)), & when \ 0<\!P[\zeta=+\infty]<1 & on \ m{R}^n \ e(0,C_0(m{B}_n)), & when \ P[\zeta=+\infty]=0 & on \ m{R}^n. \end{cases}$$

To find sufficient conditions on coefficients a_{ij} , b for conservativeness and explosion, define

$$A_{+}(r) = \int_{S^{n-1}} (A(r\sigma)\sigma, \sigma)d\sigma \qquad \text{for } r > 0,$$

$$B_{+}(r) = \sup_{\sigma \in S^{n-1}} \left\{ \frac{(A(r\sigma)\sigma, \sigma)}{b(r\sigma)} \right\} \qquad \text{for } r > 0,$$

where $A(x) = (a_{ij}(x))_{i,j=1,\dots,n}$ and $d\sigma$ is the uniform measure on S^{n-1} .

Theorem 3. (1) If for some $\alpha > 0$

$$\lim_{r \nearrow +\infty} \frac{\exp\left\{-\int_{1}^{r} \frac{2\sqrt{\alpha}}{\sqrt{B_{+}(s)}} ds\right\}}{\int_{r}^{\infty} s^{1-n} A_{+}(s)^{-1} ds} = 0,$$

then the process X_t is conservative.

(2) If $\int_{S^{n-1}} d\sigma \int_{1}^{\infty} r^{1-n} (A(r\sigma)^{-1}\sigma, \sigma) \left[\int_{1}^{r} s^{n-1} b(s\sigma) ds \right]^{2} dr < +\infty$

where $A(x)^{-1}$ is the inverse matrix of A(x), then the explosion is sure, i.e. $P[\zeta < +\infty] = 1$ on \mathbb{R}^n .

The proof of Theorem 3 is based on estimates of some Dirichlet integrals of e_{α} . The details of the above results together with some extensions will appear elsewhere.

References

- [1] W. Feller: The parabolic differential equations and the associated semigroups of transformations. Ann. of Math., 55, 468-519 (1952).
- [2] M. Fukushima: Dirichlet Spaces and Markov Processes. Kodansha, Tokyo (1980).
- [3] R. Z. Hasminskii: Ergodic properties of recurrent diffusion processes and stabilization of the problem to the Cauchy problem for parabolic equations.
 T. V., 5, 196-214 (1960).
- [4] H. P. McKean: Stochastic Integrals. Academic Press, N.Y. (1969).
- [5] C. B. Morrey: Second order elliptic equations in several variables and Hölder continuity. Math. Z., 72, 146-164 (1959).