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1. Introduction. For Qu=(4,u') /4, based on aradial Laplace-
Beltrami operator we studied general transmutation theory for
operators Qu:Qou—{— q(2)u in [4] using various solutions of Qu=—ku
as important ingredients. In the present work we consider operators
Qu=2Qu+ 2 k*— g(x)}u (with corresponding eigenfunction equations
Qu=22u) and will concentrate on the case 4,=4° which arises in various
scattering problems (cf. [1], [2], [6]1-[9], [11], [12]) so a certain amount
of guideline information is available (cf. also [5]-B transmutes P into
Q,B: P-Q, if QBf=BPf for suitable f). We show here that with
suitable modifications most of the constructions and techniques of the
Q theory have a version in the Q theory and we describe some of the
basic transmutations and connection formulas.

2. Basic constructions. We take 4,=2* and set p=au so Qu
=2 is
2.1) 2"+ w{k* — ()= ¢
(G real) and one writes 22=c(6+1)=2*—1/4 (so ¢ ~l=angular momen-
tum and v~1+1/2). We denote by ¢(v, k, x) the “regular solution” of
2.1) (p~a**"* as —0) and by f(v, +k,x) the “Jost solutions” (e.g.
f, —k, ) ~e™*® a8 x—o00) with the “Jost function” f(v, —k)=W(f(v,

—k,x), 00, k, )) (W(f,9)=19'—f'9). Assume e.g. I: x|d|dx<oo and

J‘w x*|G| de<oco as in [2] but we do not emphasize hypotheses on § (cf.
(]

[1], [6], [9], [11], [12]) ; we want mainly ¢ ~¢, and f~f; as e.g. |v|—>o0,

Rev>0, where (corresponding to §=0)

2.2) ooy, by ) =2T"(w+ Dk *J (k) ;
f0=((1/2)7'&"096)1/26(1/2)”(”1/2)Hi(kx) ;

(fo=Solv, —k, x)) and

Solv, —k)=2"@2/n)"*['v+1)k~++'7* exp {(1/2)izr(v—1/2)}.

We think of % as fixed here and one knows then that f(v, —k,x) is

entire in v while ¢, k, ) and f(v, —k) are analytic for Rev>0 (the

range of analyticity can be enlarged with suitable hypotheses on §).

We follow formally now the procedure in [2] with some refinements

and elaboration. Thus set g(v, —k,7)=f(, —k,r)/r and let Z denote

the zeros v, (if any) of f(v, —k) in Rev>0 with
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Mo, k)= ¢k, —k, rdr.
J 0 J

Such y; are simple zeros and one sets dp(v)=>" 6(v—v,)/M*(v;, k) for
veZ with dp()=20*dy/zf (v, —k)f(—v, —k) for ve[0,7c0). From [2]
one has the formal completeness relation.

5(7"‘3):: <g(Vy _k’ '7'), g(”: —'k, s)>p~j g(”y '_k: r)g(”’ —'ky S)dp(v)

and we show then (g,, o', etc. refer to an operator Ql based on potential
-

Theorem 2.1. Define p(r, $)={9(v, —k,7), (v, —k, 8)), and Bgr, s)
=9, =k, 1), 9,0, =k, 8)>,. with Bf()={B(r, 8), f(r)) and Bf(r)
={B(r, s), f(8)> for suitable f. The r and s brackets refer to distri-
bution pairings on [0, o) and one has triangularity p(r,s)=0 for s>r

with f(r,$)=0 for r>s. Set Gf()= f@):j“ F($)g(, —F, $)ds so that

formally Gfr)=&"F()=r@)=< ), 90, —k, 7>, Then B:Q—Q
and B(~B:Q—Q, are transmutations with B{gl, —k, )} ()
=g,0, —k,7r) and ﬁ{gl(v, —k, )=gw, —k, ). Set B=3* (so Bf(r)
={B(r, 5), £(5)>) and correspondingly B=B*; then GBf=0,f and Gf
=G, Bf (with B=B"").

We indicate next a connection to an exterior transmutation de-
veloped in [7], [8]. Thus for Q, based on 4,=x""' one considers Q
=2*Qy+ x*{k*— g(x)} and P=2Q,+2k*. For suitable ¢ a kernel K(r, s)
is constructed in [7], [8] (by successive approximations) such that the
formula

2.3) u(r, -)={B.h)(r, )=h(r, )+ j " s K(r, $)h(s, -)ds

links suitable solutions # of (4,+k>)h=0 to corresp(lnding~solutions u
of {4,+(k*—q(r))}u=0. The kernel K(r, s) satisfies Q. K=P,K for s>r

with 2r":K(r, 1")=r° sg(s)ds. If we write K(r,s)=K(r,8)Y(s—r) (¥

the Heaviside function) then one can show

Theorem 2.2. For suitable g the map B, f(r)=f(r)+ <K (r, s), ()>
is a transmutation P—Q and for n=3, &(s—r)+K(r,s)~f(r,s)
={g(v, —k, 1), g:(v, —k, $)>,. (Where @, ~ P and o' is the “free” measure
indicated below).

Example 2.3. We denote by “free” the case where §=0 so that
(2.2) holds. In this event f(v, —k) has no zeros for Rev>0 and dp(v)
= —(v/7k) sin nvdy is the “free” measure. The inversion theory for
® is the Kontorovi¢-Lebedev theory which can be treated in various
forms (cf. [10]). The version which we obtain below (cf. (2.5))
specializes for §=0 to

@.4) é(u)=j: G(s)Hi(ks)ds ; rG(r):%r:w VG )T (er)dy.
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In order to arrive at a general form of (2.4) we suppose f(v, —k)
has no zeros for Rev>0 so that dp(x)=p(v)dv. From properties of
f(xy, —k, x) and ¢(=+v, k, x) one has

P =G0, 16, =k == [ 616, k1))
and from this
@2.5) PO = — (i) f W DOW, k, r)dy
where O(v, k, r)=¢, k, 1)/ f(v, — k) (cf. [4]) and using the formal rela-
tion (*) —(ip/n) J:o Dy, k, 8)g(v, —k, s)ds/s=d(p—v) arising from (2.5)

we show

Theorem 2.4. Given absolutely continuous do(v)=p()dy the in-
version (2.5) holds. If Q and Q, both have continuous spectrum then
B is characterized by B{g,(v, —k, - )}(r)=(/p)®)9W, —k, r) and in addi-
tion
(2.6) B{®,(v, k, 8)/s}(r)={p(r, 8), D,(v, k&, 8)[8) =D (v, k, )] 7.

One can construct a formal proof of (2.6) following [4] (using
analytic continuation) but a simpler formal verification can be obtained
by looking at (B(r, s), gv, —k, r)>=g,(v, —k, s) as an extension of & to
B, so that A(v, s)=g,(v, —k, s), using the inversion (2.5), and then ap-
plying (*) for @, and g,.

3. General techniques. First, assuming g(v, —k,1)=0 on the
spectrum,

3.1) . U(T, 8)= <f(v)/g(”, —k’ 1), g(V’ _k’ 7‘)9(”’ —k: 3)>p

where f(v)=®f(v) makes sense formally and using the idea of gener-
alized translation developed by Hutson-Pym (cf. [3], [4]) one has for
suitable ¢

Theorem 3.1. U(r,8)=T:f(s) represents a generalized transla-
tion for @ determined by Q,U=Q,U, UQ, )= f(s), and D,U(1, )=Cf(s)
=LI'(s,9), f()) where

- IZ(S, 7])= <g(V’ —kr S)g(”, —k, 77)’ Dg(V’ _k, 1)/g(”’ —ka 1)>p
(QC=CQ and Cr)=s'Q1)).

The “Cauchy problem” indicated in Theorem 3.1 is to be considered
in two regions 7, s>1 and 0<r, s<1. It can be transformed into two
halfplane Cauchy problems >0 and <0 respectively by setting
p=log r and §=log s, from which standard uniqueness results can be
transported ; the “data” is given on — oo <&< oo,

Theorem 3.2. Let Q and @, be based on d,=x""* as above and
let A and C be linear operators commuting with Q,. Let ¢ be the uni-
que solution of Q,p=qlp (@' ~@), o(1,)=Af(s), and D,p(1, s)=Cf(s).
Then Bf(r)=¢(r,1) determines a transmutation B : Q,—Q.

Remark 3.3. In this spirit one can formally construct B and B

oo

—g0
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via Cauchy type problems as follows (n=3). Let U,(%, s) have the
form (3.1) with (p, g, ®) replaced by (o', 9,, ®) ete. Set o(r, s)
={B(r, t), Uyt, s)> and @(r,s)={B(r,t), U,(t,s)) so that ¢(r,1)=Bf(r)
and ¢(r,1)=Bf(r). For suitable f we obtain e.g. (1, s)=Af(s)
={f(0), A(s, 0), D,1, 8)=Cf(8)=(f(a), &(s, 7)), where formally (s, s)
={aly, k) 9,(v, —k, 8), 9:(v, —k, 0)),» and C(s, )=<{r0, k) 9., —Fk, 8),
9.0, —k, 0)>p1 (alv, ©)=9(@, —k, 1)/91(”’ —k,1) and T(Vy k)=Dg(v, —k, 1)/
9.(v, —k,1)). Similar formulas apply for ¢(1,s) and D,p(1, s) with p'
replaced by p in the corresponding %(s, ¢) and C(s, o).

By modifying some techniques in [4] one shows (cf. also [3])

Theorem 3.4. For suitable f,h and T; defined as in Theorem
3.1 there results {T:f(s), h(8))={f(s), Trh(8)) and setting (fxh)(r)
=(T77(s), h(s)) it follows that (fxh)"=fh/g(v, —k,1).

Remark 3.5. Following [4] it is possible to develop various
Gelfand-Levitan (G-L) equations. For example baged on the equations
g(vy - k’ )= </§(7" S), gl(”; —k, 8)> and g:(”’ "'k, )= <‘B(u’ ), g(U, —k, u)>
a G-L equation arises in the form 8(r, t)=(A(r, s), A(s, t)> where A(s, t)
= <g1(u9 - k’ s), gl(”? ’_k, t)>p'
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