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1. Introduction. First we consider iterations of a family of
maps f, defined by f,=p+x—=2?. If 4<0, there are no fixed points.
As p 10, the orbit of iteration by f,, more and more sojourns around
0. Finally at x=0, 0 becomes a fixed point. If x>0, there are two
fixed points where the positive one is stable and the negative one is
not.

Pomeau and Manneville [1], [2] studied such bifurcation in con-
nection with an intermittent transition to turbulence in Lorenz equa-
tion. They call the motion near 0 “laminar phase” and the motion out
of 0 “burst”.

A general form of 1-parameter family which bifurcate as f‘,, above
is given by Guckenheimer [3]. That is,

F(y, z) is C* function of both x and z,

O Fly 2=, @ I (, z)=1
1.1 ox
*F oF

® ZEGew>0 @ Thga>o

By a conjugate transformation using an affine map and reparametri-
zation we can transform (1.1) into the following form:

1.2) F(p, 2)=p+x—2"+pa f(u, )+ 2°9(2)

here f(u, x) and g(x) are continuous at the origin.

Further we introduce a noise in 1-dimensional dynamical system
given by (1.2) which is different from [4] as
1.3) X =F(u, X,)+|pf*’- £,
here 6>0 and &, is bounded random variable.

We are interested in getting the order of increase of the duration
in “laminar phase” by (1.3) as 1 0.

2. Definition and main result. Definition. Letd>0and F(g, %)
be given by (1.2). We say § is suitable if there exists y,<<0 such that
F(y, v)<x for (u, ) € [g, 01X [—d, 81—{(0, 0)}.

Remark. By the definition of F(g, ), 6 which is sufficiently near
0 is suitable.

Definition. Let >0 be suitable and consider a sequence
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(2-1) x0=5: xn+1=F(ﬂ9 xn)+lﬂll+0'$n
here >0 and there exists C >0 such that |£,|<C for all n. We define
sojourning time in [—4d, 6] denoted by T,(x) as
Ty()=min{n:z,<—4}.

Main theorem. Let 6 be suitable, then we have
2.2) lm} V—p -Tw=nr.

3. Proof of the main theorem. Let =+ —p and we use T, )]
in place of T,(—75).

Lemma 1. Let

3.1 0, Rl a)=2"99

3.1) o> (a, 9, ) i

2,=0, Ty, =R(a, 7, x,) and S;(a, p)=min {n: x,<—34}. Then,
2.Tan"* (5/9) ]

3.2 Sy, =[____ 1.

3.2) e

Proof of Lemma 1. R(a, 7, x) is projection of a rotation around
(0, —») with angle Tan~'(ap) to x-axis. Consequently R(w,7,x) is
conjugate to y-Tan~' (ap) by y=Tan"' (z/y) and then [—J, 6] is mapped
bijectively to [—Tan-*(3/5), Tan='(d/7)]. Therefore we have (3.2).

Lemma 2. Let 0<e<1, then there exists 4>0 such that for all
6e 0,4
(3.3) a(l—e)<limy- Ta(v)él_i:@— - To)<a(l+e).

Proof of Lemma 2. Let

R, 7) = 12T (—72/2, ¥)—a'g(@)
7'+

then 2(0, 0)=0 and &(x, ) is continuous at (0,0). From (1.2) and (3.1),

R( 115 o) —F(—1,0) = (oc@%(ﬁ_% +h@ )

1 —etx
R( IR/8] >—F—’Zy = : Z(W h ’ ).
1) P o=@ ) {—eqg @D
As e/(1+e)>0, —e/(1—2)<0 and 2*+7*=0, there exist 4, 5, >0 such
that

3.4) R( - 1

—¢&

1
s 7, <F(— 2, SR( IR/ )
7 x)_ (=7 0= 1+4¢ »E

for any (9, x) € [—94, 9] X[—4,4]. Now |&,| is bounded, hence for
sufficiently large A >0 we have

Alvl2+20 o020 A|ﬂ|2+20
3.5 AT e o Al
(8.5) 1—e+9c<77 S<1—}-e+a(:
for x e[—4, 4. Then by (3.4) and (3.5) we have
B8 RB(I ) <r bt F—r, 0<R( 1 90)
1—¢ 1+¢
here 5 =9v1+A4A%° and 9,=9/1—A»”. In (3.6) the left-hand side
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decreases faster than F' in [—4, 4] and the right-hand side decreases
slower than F in [—4, 4]. Therefore for any ¢ € (0, 4) we have
Sa( 1i£ ’ 7]2>§TJ(7])§SJ< 1:-_5 ’ 7/1)-
Both sides are given by (3.2) and we have (3.3) through elementary
calculation.
Proof of the main theorem. Let d be suitable and 0<<§’<g, then
by definition
M=min {{x—F (g, x)—|p|'"*?-C|: (1, ) € [pg, 01 X [¢", 61U [—05, — ']}
exists and is positive for some p,. Hence the sojourning time in
[¢7, 6] and in [—§, —4&’] are bounded by (6—4&)/M. Therefore we have
Ta(/,t)—2(5—-5/)/M§ Ta'(#)éTa(#)-

Hence we have

lim V—p Ty (=lim vV—p Ts(ﬂ)é% v —p Ta(y)éﬁ V= Tu(p).
By Lemma 2, both sides are bounded by z(1—¢) and z(1-+¢) respec-
tively. Hence we have (2.2).

Remark. The key idea of the proof of our theorem is that F(y, x)
satisfying (1.2) is well approximated by R(l, v — g, 2)=(x+p)/1+2)
which is essentially a rotation around (0, —v/ —p).

At the end of this paper I would like to thank Prof. M. Yamaguti
for his advice and encouragement.
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