92. Characterization of Amenable Semigroups with a Unique Invariant Mean*)

By Koukichi SAKAI
Department of Mathematics, Kagoshima University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1983)

- § 1. Introduction. The purpose of this note is to characterize the algebraic structure of amenable semigroups with a unique left invariant mean. Let S be an abstract semigroup and m(S) be the Banach space of all bounded real functions on S with the supremum norm. Let ψ be a mean on S, i.e., ψ is a positive linear functional on m(S) such that $\psi(1_S)=1$. Here in general 1_A is the characteristic function of any subset A of S. For any $s \in S$ define a mean $s\psi[\psi s]$ on S by $s\psi(f)=\psi(sf)\left[\psi s(f)=\psi(f_s)\right]$ ($f\in m(S)$), where $f(t)=f(st)\left[f_s(t)=f(ts)\right]$ ($f\in S$). f(t)=f(t)=f(ts) is said to be left [right] invariant if f(t)=f(t)=f(ts) for all f(t)=f(t)=f(ts) we denote the set of all left [right] invariant means on f(t)=f(t)=f(t) is nonempty. Especially f(t)=f(t)=f(t) is called extremely amenable if there exists at least one mean f(t)=f(t) is a called extremely amenable if there exists at least one mean f(t)=f(t) is extremely amenable if and only if it has the property (cf. [3]):
- (1.1) For any a, b in S, there exist some s, t in S such that as=bs and ta=tb.

Suppose now S is amenable. Then S has the following property:

- (1.2) For any a, b in S, $aS \cap bS$ and $Sa \cap Sb$ are nonempty.
- By (1.2) we can introduce a congruence (c) on S defined as follows:
- (1.3) For any a, b in S, a(c)b if and only if as=bs and ta=tb for some s, t in S.

We denote by S_c the factor semigroup of S mod (c), and by ρ the canonical homomorphism of S onto S_c . We note that S_c is two-sided cancellative. When S_c becomes a group, we denote by K the kernel of ρ . Under these notations the main theorem is stated as follows.

Theorem. Let S be an amenable semigroup. Then the following assertions are mutually equivalent:

- (A_i) S has a unique left invariant mean.
- (B) S_c is a finite group and K has the zero element.
- (C) S contains a finite two-sided ideal which is also a group.
- (A_r) S has a unique right invariant mean.

^{*&#}x27; Dedicated to Prof. Hisaaki Yoshizawa (Department of Mathematics, Kyoto University) on his 60th birthday.

§ 2. Proof. In order to prove the main theorem we begin with some lemmas. Let us define a map ρ^* of $m(S)^*$ to $m(S_c)^*$ by $\rho^*(\phi)$ $(h) = \phi(h \circ \rho)$ $(h \in m(S_c))$ for any $\phi \in m(S)^*$. Since ρ is surjective, the following is an immediate consequence of Theorem 1 in [1, p. 531].

Lemma 1. ρ^* carries LM(S) [RM(S)] onto $LM(S_c)$ $[RM(S_c)]$.

The following two results on the uniqueness of invariant mean are essential in the proof of our theorem.

Lemma 2 (Corollary 2.1 in [2]). A semigroup with left [right] cancellation has a unique left [right] invariant mean if and only if it is a finite group.

Lemma 3 (Theorem 1 in [5]). An extremely amenable semigroup has a unique left [right] invariant mean if and only if it has the zero element.

Lemma 4. If S_c becomes a group, then we have:

- (1) $\rho(a) = \rho(b)$ if and only if as = bs and ta = tb for some s, t in K.
- (2) When K has the zero element p, $\rho(a) = \rho(b)$ if and only if ap = bp and pa = pb. In particular ap = pa for all a in S.
 - (3) K is extremely amenable.

Proof. The "if" parts in (1) and (2) are obvious. Conversely let $\rho(a) = \rho(b)$ and take u, v in S such that au = bu and va = vb (cf. (1.3)). Moreover since S_c is a group, we can find x, y in S such that $\rho(x) = \rho(u)^{-1}$ and $\rho(y) = \rho(v)^{-1}$. Then putting s = ux and t = yv, we see that $s, t \in K$, as = bs and ta = tb. Especially if p is the zero element in K, we have ap = a(sp) = (as)p = (bs)p = bp and similarly pa = pb. In particular ap = pap = pa for all $a \in S$, because $\rho(a) = \rho(pa) = \rho(ap)$. Thus we have (1) and (2). (3) follows from (1) and (1.1). Q.E.D.

A subset σ of S is called a ρ -representative if ρ induces a bijective map of σ onto S_c . The following is an analogy of Theorem 4.4 in [4].

Lemma 5 (Lemma 4 in [6]). Suppose that S_c is a finite group of order n, and let $\sigma = \{a_1, a_2, \dots, a_n\}$ be a ρ -representative. Then there is a bijective map $L_{\sigma}[R_{\sigma}]$ of LM(K) [RM(K)] onto LM(S) [RM(S)] defined as follows: for any ϕ in LM(K) [RM(K)] and $f \in m(S)$,

(2.1)
$$L_{\sigma}(\phi)(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(P(a_i f)) \qquad \left[R_{\sigma}(\phi)(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(P(f_{a_i})) \right],$$

where P(f) denotes the restriction of f to K.

Proof of the main theorem. Suppose (A_l) . Then $LM(S_c)$ is a singleton by Lemma 1. Since S_c is left cancellative, it follows from Lemma 2 that S_c must be a finite group. Accordingly K is extremely amenable by Lemma 4(3), and LM(K) is also a singleton by Lemma 5. So by virtue of Lemma 3, K has the zero element. Thus (A_l) implies (B). Similarly (A_r) implies (B). Suppose (B) and let p be the zero element in K. Then Sp = pS by Lemma 4(2), so that Sp is a two-sided

ideal in S. Moreover in view of Lemma 4(2), we get a bijective map $\tilde{\rho}$ of S_c onto Sp defined by $\tilde{\rho}(g) = ap$ $(g \in S_c)$, where $a \in S$ with $\rho(a) = g$. As seen easily, $\tilde{\rho}$ is an isomorphism. Therefore S has a two-sided ideal Sp which is isomorphic to the finite group S_c . Hence (B) implies (C). Finally let $\phi \in LM(S)$ and suppose that S has a finite two-sided ideal S which is a group with the identity S. Then $\phi(1_s) = \phi(p_s) = 0$, because S is a right ideal. So S is given in the form:

$$\phi(f) = \sum_{i=1}^{n} \lambda_i f(\alpha_i) \qquad (f \in m(S)),$$

where $J = \{a_1, a_2, \dots, a_n\}$ and λ_i 's are nonnegative numbers with $\sum_{i=1}^n \lambda_i = 1$. Here we note that J = Sp and sJ = s(pJ) = (sp)J = J for all $s \in S$. From this fact we conclude that $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1/n$. Consequently LM(S) consists of a unique mean ϕ defined by

(2.2)
$$\phi(f) = \frac{1}{n} \sum_{i=1}^{n} f(a_i) \quad (f \in m(S)).$$

Similarly we see that RM(S) is a singleton of ϕ given by (2.2). Therefore (C) implies both (A_t) and (A_r). Thus the proof is complete.

§ 3. Remarks. 1) Suppose (B) and let p be the zero element in K. Then we see that $LM(K) = RM(K) = \{\delta\}$, where δ is defined by $\delta(h) = h(p)$ $(h \in m(K))$. Consequently it follows from Lemmas 4(2) and 5 that $LM(S) = RM(S) = \{\phi\}$, where ϕ is given in the form:

$$\phi(f) = \frac{1}{n} \sum_{i=1}^{n} f(a_i p) = \frac{1}{n} \sum_{i=1}^{n} f(p a_i) \qquad (f \in m(S)),$$

where n is the order of S_c and $\{a_1, a_2, \dots, a_n\}$ is a ρ -representative. On the other hand, Sp is a unique finite two-sided ideal in S which is a group. More precisely Sp is a group with the identity p, and is isomorphic to S_c .

- 2) Suppose that S contains a finite two-sided ideal J which is a group with the identity p. Then by the same way as in [6, Theorem 2], we can prove directly that S_c becomes a finite group isomorphic to J, and that p is the zero element in K.
- 3) The main theorem remains true for any semigroup S with the property (1.2).

References

- [1] Day, M. M.: Amenable semigroups. Illinois J. Math., 1, 509-544 (1957).
- [2] Granirer, E.: On amenable semigroups with a finite-dimensional set of invariant means II. ibid., 7, 49-58 (1963).
- [3] —: Extremely amenable semigroups. Math. Scand., 17, 177-197 (1965).
- [4] Lau, A. T.: Topological semigroups with invariant means in the convex hull of multiplicative means. Trans. Amer. Math. Soc., 148, 69-84 (1970).
- [5] Sakai, K.: Characterization of extremely amenable semigroups with a unique invariant mean. Proc. Japan Acad., 58(A), 357-360 (1982).
- [6] —: On left amenable semigroups with a unique left invariant mean (to appear in Sci. Rep. Kagoshima Univ., 32 (1983)).