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(Communicated by Kosaku YoSIDA, M. J. A., Sept. 12, 1983)

This note presents a method for generating a class of special
solutions to the self-dual Yang-Mills equations. They are shown to be
parametrized by some matrices which serve as “frames” representing
the corresponding points of the (infinite dimensional) Grassmann
manifolds. Thus a remarkable similarity to the results of Sato [7]
and Date et al. [5] for the “soliton equations” is revealed. Also it
should be added that the method presented here is closely related with
those of Cherednik [3], Date [4] and Krichever [6].

§1. The self-dual Yang-Mills equations and the linearization.
Hereafter, in contrast to the usual formulation in the real domain
(see, for example, [1] and the references therein), we shall work with
the complex analytic theory of the self-dual Yang-Mills fields with
structure group GL(r, C) (r>2). All the functions which will appear
in what follows are supposed to be holomorphic in some complex
domains. Thus, the self-dual Yang-Mills equations which we shall
consider are, by definition, given by
( 1 ) [ay_l-Ay’ az+A2]=O, [az+Az) 617+A17]=0’

[ay+A1/, 67+A,7]=[6,+A,, as‘l’As]’
where x=(y, ¥, 2, Z) are complex independent variables in C* (7 and z
do not indicate the complex conjugates of y and 2), 8,=4/dy, - -+, 0;
=9/9Z, and A, ---, A, are unknown matrices of size rXr of holo-
morphic functions of .

Introducing another independent complex variable 1, we can
rewrite (1) into
(2) [—20,+4,)+@,+A,), 0;+A,)+ 6, +A)]=0,
so that, as pointed out first by Belavin-Zakharov [2] and Ward [8],
the linear system
(8) (—20,+A4,)+ @+ AT (z, D=0,

2@+ A)+ @+ AT (», H=0
presents a linearization of (1). Note that if (3) is fulfilled for an
invertible matrix ¥'(x, 2) of size r Xr, (2) immediately follows.

§2. Special solutions. As the data for the special solution
stated below, inspired by [4], [6], let us consider {,(x), m,, ¢,(z, 2),
j=1, - --, N}, where 2,(x), j=1, - - -, N, are holomorphic functions with
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(4) [—2,(x)2,+8,, 2,(x)0;+3;1=0,
my, §=1, .-+, N, are positive integers with

N
(5) > my;=rm, m is a positive integer,
=1

and ¢,(x, ), j=1, ---, N, are r-column vectors of holomorphic func-
tions, defined near (z, 2,(x)) respectively, of the form

(6) c;(x, H=2¢,Q, y+Az, —2+ A7),

where ¢,,p,9), j=1,---,N, are r-column vectors of holomorphic
functions of three variables (1, p, q). Let us define ¢, (x), 1<j<N,
0<k,l, by the expansion

(7) Peey(@, D)= Z ¢),en@)A— A, @)

A special solution to the self-dual Yang-Mills equations is con-
structed from the above data as follows:

Theorem 1. Suppose
(8) det [(cl,k,l(x))llc=0,---,m—1 [+ (czv,rc.z(x))llc:g,.--,m—11]550-

o bt
Then, for any invertible matriz Wy(x) of size rXr of holomorphic
functions of z, a matriz T(x, D=2 7, W.(2x)A"* of size rXr is
uniquely determined by the conditions
(9) ¥, Deyx, =0 (A—2,x)™) (@A—2(x)), j=1,---,N.
Furthermore, the matrices A,(x), - - -, A;(x) defined by

A,=—-0, W, W5, A, =—o,W,- W51,
(10) A=—0@W,—0,W,—A W) - Wi,

Ay=—0O; W0, W, +AW,) - Wit
and ¥ (x, 2) solve equations (1)—(3).

Remark. A holomorphic function 1,(x) with condition (4) can be
generated, for example, by solving (locally) an equation of the form
/4, y+22, —Z+27)=0 with respect to 2, where f,(2,p,q) is a holo-
morphic function of three variables (2, p, q).

The structure of higher evolutions (“hierarchy”) similar to those
of the soliton equations [7], [5] can be also specified: Let us introduce
a series of independent variables ¢ =t )ic.c<ro<r<p,» and a diagonal
matrix
11) T, D= >, diag (D ., - s 80 A (Y +22) (— 24 27)°.

vy0,0=0

Theorem 2. Suppose (8). Then, for any invertible matrix
Wiz, t), a matric T(x,t,2) = m, Wi(x, t)A"*e""? of size rXr is
uniquely determined by the conditions
12) Tz, t, De,(x, =0 (A—,(@)™) @A—2(x)), j=1,---,N.
¥(x, 2) satisfies (3) for the matrices A (,1), - - -, A;(z, t) defined by (10)
with Wo=Wy(z, t), W,=W,(z, t), and also the linear systems
A3) oW (x, t, /ot =B (@, t, W (x, 1, ), 1<a<r, 0<v,p,0,

¥y0,0
where B (x,t,2) is a matrixz of size rXr whose components are
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polynomials of A.

§ 3. Parametrization by “frames”. We shall, first, investigate
a general framework of the parametrization ; later, we shall go back
to the solutions mentioned in § 2.

Let us consider the correspondence between two matrices, ¥(x, 2)
=1 Wi(x)A™* (of size r X r) and &(®) = (£(®))k-0.1,....c,, (Of size oo Xrm
with &,(x), k=0,1, - --, being r X rm-blocks), defined by

(14) Wo(@), W, i(2), - - -, Wi(2), 0,0, - - -)&(x)=0,
where ¥'(z, 2) and &(x) are supposed to satisfy the conditions
15) det W,(x) =0, det (§e(®))io,....n-1EO0,

(16) A6(@) = (§11(X))k—0,1,... = E@)C(2)

for some matrix C(x) of size rm Xrm.
Here 4 denotes the block-wise shifting matrix (5,,,_,1,);,;-0,,... With 1,
the unit matrix of size rXr.

Theorem 3. FEach of two matrices ¥'(x, 2) and &(x) with proper-
ties (15) and (16) is determined by the other via (14), uniquely up to
the arbitrariness ¥(x, )—G@x)¥ (x, 2), &(x)—E&(@x)H(x), where G(x) and
H(x) are invertible matrices of size rxXr and rm Xrm respectively.
Furthermore, (1)-(3) are fulfilled for the matrices A (x), ---, A)(x)
defined by (10) if and only if
an (—40,48,)8(x)=&(x)A(x), (49,4 05)&(x) = &(x)B(x)
are satisfied for some matrices A(x) and B(x) of size rm Xrm.

It should be noted that ¥'(x, )—G(x)¥(x,2) corresponds to the
gauge transformation, while &(x)—&(x)H(x) defines the equivalence of
“frames” representing a common point of the Grassmann manifold as
appeared in [7], i.e. the equivalence of oo X rm-matrices whose column
vectors span a common linear subspace of dimension rm in the vector
space of column vectors of size co.

The structure of higher evolutions is described as follows:

Theorem 4. Suppose (15)-(17). Then, for any invertible matrix
Wz, t), a matrie T(x,t, )= r, W, t)A™ *eT“ of size r Xr is uni-
quely determined by
(18) (Wm(x, t)y Wm—l(x: t)’ ] Wo(x, t): O, 0, . .)eT(t,A)e(x)=0.

U(x,t, 2) satisfies (3) for the matrices A, (x,1), - - -, A;(x, t) defined by
(10) with Wo=W(x, t), W,=W (z, t), and also linear systems (13).

The solutions presented in § 2 are recovered if we set

(19) R G e Y [ NP

1
A(x), B(x) and C(x) are given by
(20) A(x)=—@J_, diag [0,4,(x), 20,4,(x), - - -, m,0,4,(2)],
B(x)= ?’=1 diag [azlj(x): zai'zj(x)) cy mjailj(w)]’
C(x) =@ij=1 J(Zj(x)9 mj),
where J(2, m) denotes the Jordan cell of size m xXm with eigenvalue 2.
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