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In [6], we proved a factorization theorem for the Poincaré poly-
nomial of the complement of hyperplanes in an I-dimensional vector
space over the complex number field C when the arrangement of the
hyperplanes is free. That was called Shephard-Todd-Brieskorn
theorem there. Our main aim here is to report a generalized factori-
zation theorem for a free arrangement over an arbitrary field. The
detailed proof will appear in [3].

1. Let A be an arrangement in an [-dimensional vector space V
over a field K. In other words, A is a finite family of (I—1)-dimen-
sional vector subspaces of V. Denote the dual vector space of V by
V*. Let S=S(V*) be the symmetric algebra of V*. Fix a base
{xy, -+, 2} for V* and S is isomorphic to the polynomial algebra
K[z, ---,2]. Let Qe S be a reduced defining equation for \ J,., H.
Then Q is a product of elements of V*. The derivation of S is a K-
linear map 6: S— S satisfying 6|,=0 and 6(f9)=f6(9)+96(f) for any
fr9e8.

Definition 1. A derivation along A (which is called a logarithmic
vector field [4] when we are in the complex analytic category) is a
derivation 6 of S satisfying

0(Q) € QS.
Let D(A) denote the set of derivations along A. Then D(4) is natu-
rally an S-module.

Definition 2. If D(A) is an S-free module, we say that A is a
free arrangement.

Definition 3. A derivation § of S is said to be homogeneous of
degree b if 0(x) e S, ¢=1, - --,1), where S, is the vector subspace of S
generated by monomials of degree b. We write b=deg§d. We can
show that D(A) has a free base {4,, - - -, 6,} consisting of homogeneous
derivations if A is a free arrangement. The integers (degé,, - - -,
deg 6,) are called the degree of A (called the generalized exponents of
A in[6]). They depend only upon 4.

The following useful criterion, proved by K. Saito [4] when K=C,
remains true for arbitrary K :
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Proposition 1. For homogeneous 6,, - - -,0, € D(A), 1) 6;/\--- N8,
=:det [0,(x))<i,y<: €QS, 2) 0, - - -, 0, are a free base for D(A) if and
only if O,\ -+ - N0, e K*Q (K*=K\{0}).

2. We will define combinatorial notions. Let L(A)={\ye;H ;B
cA}. (Agree that My, H=V.) Introduce a partial order > by
X>Y iff X©Y. Then V is the minimal element. We simply write
L instead of L(A).

Definition 4. The Mobius function p on L is inductively defined
by

p(Y)= _Z§§{ w(X) (Y e L).

The characteristic polynomial A, t) € Q[t] for an arrangement A is
defined by
XA, ©)=> ye, p(X)t4™ %,

In [1], Orlik-Solomon showed that (—t)' x(4, t~') equals the
Poincaré polynomial >,.,dim H'(M)t! M=V\U g, H) when K=C.
Our main result is

Factorization theorem (see [6] when K=C). For a free arrange-
ment A with its degrees (b, ---, b)),

XA, &)= 1. (¢=Db).

Example 1. Let K=C. When A is the set of all reflecting
hyperplanes of a finite unitary reflection group (over C), A is free.
In this case, Factorization theorem was first proved by Orlik-Solomon
[2].

Example 2. Let K=F, (a field with ¢ elements). Let A be the
arrangement consisting of all (I—1)-dimensional subspaces of V.
Define

0,=> %t x47'(@/ox,) G=1, - --,0.
Let a=>7t_,c,x, € V*. Then
u(@)=215 ) e,
= bacx) e al.
For each H e A, fix an element «, € V* such that H=ker (¢;). Note
that 6,(ay) € a,S (H € A) by the argument above. Let Q=[]xc .
0/ (Q)=2 nea (Q/aH)ai(aH) e @S.
Thus 6,, - - -, 0, € D(A). The determinant
X, cee
x¢ - - xf
ON- - NO=" !
xgl—l‘ . -9(1‘11‘—1
is not zero because the coefficient of x,2¢. - -2¢ *is 1. One also has
iydegf,=14q+ - +¢'*
=(¢'—1)/(¢g—1D=4A=deg Q.
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Thanks to Proposition 1, these imply that 6,A--- A6, e K*Q and that
6, ---,0, are a free base for D(A). Thus A is free. In this case, by
Factorization theorem, one has
XA, )=t-D({Et—q)-- - (t—q'").
3. Fix Hye A. Define

A'=A\{H,},

A”={HNH, HeA’}.
The arrangement A” is an arrangement in the (I—1)-dimensional
vector space H,.

Addition-deletion theorem. Any two of the following three con-
ditions imply the other one.

(1) A is free with its degrees (b, - -+, b)),

(2) A’ is free with its degrees (b, ---,b,_,, b,—1),

B) A" is free with its degrees (b, -- -, b,_).

This was proved in [5] for K=R or C. The principle of our
proofs for Factorization theorem and Addition-deletion theorem is
essentially same as our proofs when K=C [6] [6]. In order to over-
come the obstruction which appears when K is a finite field, the fol-
lowing lemma is crucial :

Lemma 1 (Stability of freeness under an algebraic field extension).
Let A be an arrangement over K. Suppose that F' is an algebraic
field extension of K. Denote the corresponding arrangement in VQ F
by Ap. Then the arrangement A, over F is free if and only if the
arrangement A over K is free.

By using Lemma 1, we can prove the following proposition, which
is important in our proofs for the two theorems above, for an arbitrary
field K :

Proposition 2. If A is free, then so is Ay=:{He A; HOX} for
any X e L.
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