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In [6], we proved a factorization theorem for the Poincar poly-
nomial of the complement of hyperplnes in an /-dimensional vector
space over the complex number field C when the arrangement of the
hyperplanes is free. That was called Shephard-Todd-Brieskorn
theorem there. Our main aim here is to report generalized fa.ctori-
za.tion theorem tor ree rrangement over a.n a.rbitrary field. The
detailed proof will appear in [3].

1o Let A be an arrangement in an/-dimensional vector spce V
over a field K. In other words, A is finite fa.mily of (/-1)-dimen-
sional vector subspaces o.f V. Denote the dual vector space of V by
V*. Let S-S(V*) be the symmetric algebra of V*. Fix a ba.se
{x, ..., x} for V*, and S is isomorphic to. the polynomial algebra,
K[x, ..., x]. Let Q e S be a reduced defining equation for [_Jne H.
Then Q is a product of elements o.f V*. The derivation o.f S is a K-.
linear map t" S-S satisfying ]--0 and O(fg)--ft(g)+gt(f) for any
f, geS.

Definition 1. A derivation along A (which is called a logarithmic
vector field [4] when we are in the complex analytic category) is a
derivation t of S satisfying

o(Q) e Qs.
Let D(A) denote the set o.f derivations along A. Then D(A) is natu-
rally an S-module.

Definition 2. If D(A) is an S-free module, we say that A is a

free arrangement.
Definition 3. A derivation 0 o.f S is said to. be homogeneous of

degree b if t(x)e S (i--1, ...,/), where S is the vector subspace of S
generated by monomials of degree b. We write b=degO. We can
show that D(A) has a free base {O, ..., O} consisting of homogeneous
derivations if A is a free arrangement. The integers (degO,...,
deg Ot) are called the degree of A (called the generalized exponents of
A in [6]). They depend only upon A.

The following useful criterion, proved by K. Saito [4] when K= C,
remains true for arbitrary K"
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Proposition 1. For homogeneous G, "’, O e D(A), 1) 0/.../0
---" det [0(x)], e QS, 2)G," ",G are a free base for D(A) if and
only if 01/ / e K*Q (K*=K\{0}).

2. We will define combinatorial notions. Let L(A)=(,e.H B
_A}. (Agree that f.e H=V.) Introduce a partial order > by
X>Y iff X_Y. Then V is the minimal element. We simply write
L instead of L(A).

Definition 4.
by

The M6bius function/ on L is inductively defined

(v) 1,
/(Y) x<r /gX) (Y e L).

XL

The characteristic polynomial Z.(A, t)e Q[t] for an arrangement A is
defined by

z(A, t)= z(X)t’.
In [1], Orlik-Solomon showed that (-t) Z(A, t-) equals the

Poinear6 polynomial 0dimH(M)t (M=VeH) when K=C.
Our main result is

Factorization theorem (see [6] when K=C). For a free arrange-
ment A with it degrees (b, ..., b),

(A, t) (t- b)
xample 1. Let K=C. When A is the set o all reflecting

hyperplanes of a finite unitary reflection group (over C), A is free.
In this case, Factorization theorem was first proved by Orlik-Solomon
[2].

xample 2. Let K=F (a field with q elements). Let A be the
arrangement consisting of all (/-1)-dimensional subspaces of V.
Define

/x) (i 1, ,1).o :x’-(
Let a=: c+x+ e V*. Then

0() :x-’c
For each H e A, fix an element an e V* such that H=ker (an). Note
that 0(a+) e aS (H e A) by the argument above. Let Q=

0(Q)=+(Q/)o() e QS.
Thus 0, ...,0t e D(A). The determinant

x xt
x ...x

0A...A0t=

Xt-’. X
is not zero because the coefficient of xxg.., x?-’ is 1. One also has

: degG=l+q+ +q-
=(qt-1)/(q-1)=A=deg Q.
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Thanks to Proposition 1, these imply that 0A... A0 e K*Q nd that
0, ...,t, are a ree base or D(A). Thus A is free. In this case, by
Factorization theorem, one has

Z(A, t) (t- 1)(t- q)... (t- q-).
3. Fix H0eA. Define

A’--A\(Ho},
A"={H fq Ho, H e

The arrangement A" is an arrangement in the (/-1)-dimensional
vector space H0.

Addition.deletion theorem. Any two of the following three con-
ditions imply the other one.

(1) A is free with its degrees (b, b),
(2) A’ is free with its degrees (b, ..., b_, b-l),
(3) A" is free with its degrees (b, ..., b,_).
This was proved in [5] for K=R or C. The principle of our

proofs for Factorization theorem and Addition-deletion theorem is
essentially same as our proofs when K=C [6] [5]. In order to, over-
come the obstruction which appears when K is a finite field, the fol-
lowing lemma is .crucial"

Lemma 1 (Stability of freeness under an algebraic field extension).
Let A be an arrangement over K. Suppose that F is an algebraic

field extension of K. Denote the corresponding arrangement in V(R) F
by Ae. Then the arrangement Ae over F is free if and only if the
arrangement A over K is free.

By using Lemma. 1, we can prove the following proposition, which
is important in our proofs for the two. theorems above, for an arbitrary
field K:

Proposition 2. If A is free, then so is Ax= :{H e A; H@X} for
any XeL.
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