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Wave Front Solution o Some Competition
Models with Migration Effect

By Yuzo HOSONO*) and Syozo NIIZEKI**)

(Communicated by K.Ssaku YOSIDA, M.J.A., June 14, 1983)

1o Introduction. Consider the following semilinear hyperbolic
system of partial differential equations-- + lu- a b u

1+ e u /

(1) v av ( b2u --c2v)v---g(u,- + .a-- l+ ev
)

(x, t) e (-, +)(0, +),
where all the coefficients in (1) are real constants such that ,, a,0,
b,0, c,0 and e,0 (i=1, 2). Here, u and v are population densi-
ties of two species with distinct migration speed and , respectively.
Therefore, we consider nonnegative solutions only. In case o.f e=e
=0, the system (1) becomes the classic Volterra-Lotka competition
models. Yamaguti [4] considered the system (1) when f and g are
linear functions of u and v, and he obtained the exact solutions by
using Hirota’s method [2]. By the computer simulations, we have
ound that the solutions given in [4] include the wave ront solutions
of the orm

u(x, t)=u(z) r exp z {1 +r exp z},

v(x, t)=v(z)= a /{+r exp z}, z=Qx-t,
C2 /

where , Q and are some constants.
In this paper we shall show that the system (1) has unique (except

modulo translation)wave front solutions joining two distinct states
P=(a/b, ) and P=(, a/c), where only one of two species exists.

2. Formulation of problem. In order to seek wave ront solu-
tions joining P and P, put (ux, t), v(x, t))=(u(z), v(z)) with z=x-at
(a#Z,,). Then our problem is reduced to find solutions of ordinary
differential equations of the form

( 2 ) du f(u, v)uA(u, v), d. g(u, v)v--g(u, )
dz Z--a dz

with the boundary conditions
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( 3 (u(-- oo), v(-- oo))-- (0, a./c) (u(+oo), v(+oo))-(a/b, 0).
Now, by solving f(u, v)--O and g(u, v)-O with respect to u and v

respectively, we have two functions p(u) and q(v) of the form

v =p(u) ---b (u---a )(eu+ 1),
c b(4)

u-- q(v) )(e2v + 1).
b \ c /

For these unctions p(u) and q(v), we assume that

(5)
max {p(u)[0_<_u <= a__} a_,c
max q(v) 10v<: a =d<__,

and define the domain .q) by

( 6 2 (u, v) [p(u)<v< - (u, v) q(v) <u <-Hence by (4) we have
( 7 ) f(u, v) <0, g(u, v) <0, (u, v) e 2.

It can he easily seen from the phase plane analysis that there
exist solutions of (2) and (3) only when the traveling speed a satisfies
the conditions
(8)
In view of (5) and (8), we know that the dynamical system (2) has at
least four critical points among which P0-(0, 0), P, and P are saddle.

:o Existence of wave ront solutions. We shall show the ex-
istence of wave front solutions by the following lemmas.

Lemma 1. For any fixed a satisfying (8) there exists unique
trajectory v=v(u, a), in through the point P., of equation

( 9 dv h(a) g(u, v)v where h(a)--
du f(u, v)u ,- a

and it satisfies the inequality
(10) v(u, a.) <v(u, )
for a a. on the interval on u where v(u, a) and v(u, a) are defined.

Proof. For any point P=(u, v), we put

j(p) =((Of/Ou)(u, v) (Of,/v)(u, v))(ag,/au)(v, v) (ag/av)(u, v)
where f and g are defined in (2). Then for P= (0, a/c) we have

((c,/(l--a)}((a,/c)--(a/c..)} 0 )J(PO
\(1/(a-,)}{(a.b) / (a.e+ c.)} a./(a-,)

Denote the eigenvector of J(PO corresponding to the positive
eigenvalue {c/(--a)}((a/c)-- (a./c)} by t(1, m(a)), where

{(abc) / (a.e. + c.)}{h(a) / ((a.c ac) ac.h(a))}. By (6) and (8)
we have {(- b)/(ae+ c)} re(a) O, lira re(a) 0 and lim re(a)

a-p+O a-*-O
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(-- b)/(ae+ c2). For any fixed a satisfying (8), it is well known
fact that the trajectory of (9), leaving the saddle point P in the direc-
tion of eigen vector t(1, re(a)), is unique (see [3]). If aa2 then m(a)
m(al) holds, ancl for sufficiently small/0, we have v(u, a2)v(u, a)
on the interval 0u/. We now suppose that the inequality (10) does
not hold. Then, for some UoO, we have (uo, a)=v(uo, a,) and v(u,

v(u, a) (0 u0). By putting v(u0, a) v(u0, a) v0 and by (7) and
(9), we have (dv/du) (u0, a)-- (dr/du) (o, a) for (u0, v0) e _q) since
h(a) h(a). On the other hand, we have {(v(u, a)- V(Uo, a))/(u- u0)}
{(v(u, a)--V(Uo, a.))/(U--o)} for 0Uo. Hence we obtain (dv/du)
(o, a)<(dr/du)(Uo, a) as u tends to u0, which contradicts the fact that
(dv / du)(uo, a) (dr / du)(uo, a2) < O. Q. E. D.

Lemma 2. The trajectory v(u, a)of (9) in _(9 through P2 is con-
tinuous with respect to a, that is, for any ao satisfying (8) we obtain

(11) lim v(v, a)=v(u, ao).

ooL opoo. oo b[1].
Lemma 3. The trajectory v--v(u, a) in through P passes

through some point (a/b, Vo) with Ovo(a./c) when a is sufficiently
close to/.

Proof. Put v-- k(u)-- -Cu - (a/c). Here, we choose positive
constant C small so that ((u, k(u)) [0 u(a/b)} e holds. Then,
by (5) and (7), there exists some positive constant M such that 0
((g(u, v)v)/(f(v, v)u)}<=Mholds on L--((u, v)[ v--k(u), Ou(a/b)}.
Then, if a is sufficiently close to/ we see from (9)that Cdv/du

h(a)(g(u, v)v/f(u, v)u) 0 holds on L. On the other hand, dv/du
--h(a)(g(u, v)v/f(u, v)u)O on L2--((u, v) iOu<al/bl, v=a/b2}. Hence
we can easily derive the conclusion of this lemma. Q.E.D.

Lemma 4. Put ={ae(/,)lO<v(al/b,a)<a2/c2, (u, v(u,a))e
for O<u<(al/b)} and define a* by a* =sup {a]a e C}, then a* e and
lim(a,/,)_0 v(u, a*)=0 hold.

Proof. Since ’:/=, by Lemma 3, we have /<a*. Suppose that
a*=,. In view of (5), we choose two numbers u and u. such that
d<u<u2<(a/b) and put ={(u, v)[ul<u<u}, then for some
positive constant a we have a=<{(g(u, v)v)/(f(u, v)u)}, where (u, v) e )Z.
Hence, if a0 is sufficiently close to , we have dv/du h(ao)(g(u, v)v/
f(u, v)u) g ah(a)< (2a) / {(u2- u)c}. Therefore the trajectory v
=v(u, ao) in through P cannot cross the straight line u=u., which
contradicts the fact that a0 e E. Hence we have a* <,. Next, suppose
that a* e . Then the trajectory v v(u, a*) in _q) through P intersects
the curve v=p(u) at. some point (]1, p(])). For a point (]., p(].)) with

V<.<(a/b), the trajectory v-v(u, a*) in _q) through (], p(])) must
intersect the segment L which is defined in the proof of Lemma 3.
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By the continuous dependency of solution of initial value problem of
ordinary differential equation, the trajectory --(u, ) in _@ through

(2, p()) must intersect L when a (e ’) is sufficiently close to z*.
Hence, the trajectory --v(u, z) in through P. intersects the above
trajectory --(u, ) at some point in .. This, however, contradicts
the uniqueness of trajectory through the ordinary point. Therefore
we have * e . Next, suppose that lim(/)_0 v(u, z*)=v*0. For
suciently small 0, by Lemmas 1 and 2, there exist 2 and z2 such
that z*z.<,, *-<v2v* and lim(/)_0 v(u, 2)=. are satisfied.
Hence, we have (a/b, 0=20 since (u, 2) is continuous on the
interval (0, a/b] with respect to u. This, however, contradicts the
definition of *. Q.E.D.

Lemma 4 yields, the following theorem.
Theorem. If he condition (5)is satisfied, then, only for a* given

in Lemma 4, there exist unique (except modulo translation) solutions

(u(x, t), v(x, t))= (u(z), v(z)), where z-x-a’t, of the following equa-
tions

du f(u, v)u, dv 1 g(u, v)v
dz /-a* dz -a*

with the boundary condition (3).
Remark. If the condition (5) is violated, it is easily seen rom

the phase plane analysis that there exists no trajectory of (2) joining
P. and P.
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