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1. Let F be a real valued convex function defined on a locally
convex space. The Fenchel-Moreau theorem is that F(x)=F**(x) if
and only if F' is lower semi-continuous at z ([1]). Many authors con-
sidered to generalize this theorem when F'is a convex operator defined
on a topological linear spaces to Riesz spaces. For example, J. Zowe
has proved F(x)=F**(x) if F' is continuous at x and z is an interior
point of the domain of F'. We shall consider the theorem in the case
where F' is not necessary continuous, nor the interior of the domain
is non-empty. In the following, let X and Y be two Hausdorff locally
convex topological vector spaces and Y is assumed further a Dedekind
complete Riesz space (order complete vector lattice).

To relate the order structure and the topological structure, we
demand furthermore that the linear topology of Y is normal i.e. the
family of the following sets

V4+YHNV—-Y"*); Vis an open set containing 0,
constitutes a base of neighbourhoods of 0 for Y, where Y* denotes the
totality of elements of ¥ equal to or greater than 0. A convex oper-
ator F' defined on X into Y is to mean that the domain of F (denoted
by D(F')) is a non-empty convex subset of X and

F(ax1+ﬁxz)§_aF(x1)+ﬁF(mz)
for a+p=1 («, B [0,1]) and x,, x, € D(F).

We shall define the conjugate function F* of F. Let L(X,Y) be
the totality of all continuous linear operator from X to Y. For
A e L(X,Y), we define F'* as follows :

F*(A)=sup {A(x)—F(x); x € D(F)}.
It is easy to see that F'* is a convex operator from L(X,Y) to Y.
Similarly, considering XCL(L(X,Y),Y), we can define the double
conjugate of F':
F**(x)=sup {A(x)—F*(A4); A e L(X, Y)}.

As usual, we define the subdifferential of F' at x ¢ D(F) with
F(x)={Ac L(X,Y); A(x)—A@)>F(x)—F(2'), «' € D(F)}.
Furthermore, we shall define the y-subdifferential for y ¢ Y* as follows :
0,F(x)={Ae L(X,Y); A(x)—A(x) >F(x)—F(2)—y, ' € D(F)}.

It is easy to see that
(a) 0F(x)=¢ implies 3, F(x) x4,
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(b) 0<y,<y, implies 3, F'(x)Ca, F(x).
In this note, we shall use the subdifferential 3,F(x) mainly, although
oF (x) makes important roles in many papers.

2. We shall show the following lemmas.

Lemma 1. F**(@z)=F(2) iff inf {y>0, 3,F(2) x¢}=0.

Proof. Since 9,F(z)2 A,, iff A,(z2)—F()>A,@)—F()—y for «’
e D(F') by definition, we have

F**(z)= sup (A()—F*(4))
A€eL(X,Y)

= sgp {A(z)—sup (A —F(2), ' € D(F))}

2A,(x)—{A,R)—FR)+y}=F)—y.
Hence F**(z) >F(z). Since F'**(2)<F(z) is always true, we have F'(z)
=F"**(2).

Conversely, let Ae D(F*) and y=F()—A(R)+F*(A). We see
easily y>0 and 4 €3, F(z).

Since 0<inf{y; 8,F(2) = ¢} <inf {F(2)—A(z)—F*(4); A e D(F'*)}
=inf {F**(z) — A()+F*(A) ; A € D(F*)}=0, we have proved the lemma.

Lemma 2. Let F be a convex operator defined on X to Y with
F(0)=0 and continuous at 0. Then, every linear operator A on X to
Y is continuous if F(x)=A(x) for all x e X.

Proof. For each symmetric open set V containing 0 of Y, there
exists a neighbourhood U of 0 in X such that F(U)cCV. Since A(h)
<F(h) and A(—h)<F(—h), we have

AR e V+YHN(V-Y") for heU.
Since the topology of Y is normal, A is continuous.

Lemma 3. Let f be a positively homogeneous convex operator
such that D(f) is a convex cone of X, and let g be a positively homo-
geneous concave operator (—g is a convex operator) with D(9)=X,
and let f(x)=g(x) for x € D(f). Then

h(x)=inf {f (y)— g(y—=) for y € D(f)}
is a positively homogeneous convex operator from X to Y.

By using the same method used in the proof of Hahn-Banach
theorem, we can prove the following lemma.

Lemma 4. For the positively homogeneous convex operator h
defined in Lemma 8, there exists a linear operator +» from X toY such
that

() L h(x) for x e X.
Hence, we have g(x) < (x) for x € X and ()< f(x) for « € D(f).

3. We shall show now a generalization of the Fenchel-Moreau
theorem.

Theorem 1. Let F be a convex operator from X to Y such that
D(F) is mot mecessary to have an interior point and S,={yeY*;
FUNDWF)CF(®)—y+Y* for some neighbourhood U of z}x¢. Then
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1) inf S,=0 implies F**(2)=F(z).
Conversely,

@) If (Y*)°x¢, then

F(2)=F**(z)+inf S,.

Hence F**(2)=F(z) implies inf S,=0.

Proof. (1) For every y e S,, there exists a convex open set U of
2 (symmetric w. r. to 2) such that

FUNDWF)CF@)—y+Y".

Hence, we can easily find that

@) =Fye, o) =int -;—{F(z+2x)——F(z)+y}‘g —y forzelU-—uz

If we define a gauge function G(x)=inf {1>0, x € 2(U —2)}, then G(x)
is a continuous convex function on X, so that g(x)=—2G(x)y is a
concave continuous operator from X to Y and f(x)=g(x) for all x
e D(Y).

By Lemma 4, there exists a linear operator v such that f(x)
>V (x)=g(x). But by Lemma 2, ¢ is continuous since g(x) is con-
tinuous. Hence

0<inf {y; 3,F () x¢}<inf S,=0.
By Lemma 1, we find F**(2)=F(2).

(2) It is easy to see that Y+ is closed if (Y*)°x¢. Let y,=infsS,
>0 and y is not greater than ¥,, then there exists some positive num-
ber ¢>0 with (1+¢)y is not an element of S,. Hence, there exists a
sequence {z,} convergent to z where F(z;) is not greater than F(2)
—(@1+¢y. From this fact, we find that

() F(z,2,—2) is not greater than —ey.

Suppose ¥ € (Y*)°. Then we shall prove that 3,F'(z)=¢. If+ €3, F(2),
then it follows

Y@)Zf@)  for x e D(f)
and so by (%) ¥(2,—2) is not greater than —ey.

But, there exists a neighbourhood U of 0 such that x= —ey for
all xe U and ¥(2;,—2) ¢ U. Hence, ¢ is not continuous and so it is
impossible.

In general case, suppose ¥ € Y+, then there exists ¥, > such that
y,€ (Y*)° and y, is not greater than y, Since 3, Fi(z)=¢, we have
3,F(2)=¢, as remarked in (b) of § 1 of this note. Hence, we have

F**(z)=F(z) implies infS,=0.
By the same argument, we have
F(z)=F**(2)4inf S,.

Remark 1. If we don’t assume (Y *)°x:¢, then (2) of Theorem 1
is not true in general, although (1) is true in any case.

Remark 2. There exists some example that the convex operator



No. 5] The Fenchel-Moreau Theorem 181

F is not continuous in everywhere and Theorem 1 is still valid. For
the case Y=I[,(co>p=1), we know that (Y*)°=¢. In this case we
have the following theorem.

Theorem 2. Let F=(f,,f,, ---) be a convex operator from X to
l,. Suppose that f**(z) is defined for ze D(F), then F**(2)=F(z) iff
each f, (1=1,2, - . .) is lower semi-continuous at z.

References

[1] A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problems. North-
Holland Pub. Company (1978).

[2] S. S. Kutateladze: Convex operators. Russian Math. Surveys, 34 (1979).

[8] ——: Convex-programming. Soviet Math. Dokl., 20, 391-393 (1979).

[4] R. T. Rockafellar: Conjugate duality and optimization. NSF Regional
Conference Series, SIAM Publ., no.16 (1974).

[6] J.Zowe: Subdifferentiability of convex functions with values in an ordered
vector space. Math. Scand., 34, 69-83 (1974).

A duality theorem for a convex programming problem in order com-

plete vector lattices. J. Math. Anal. Appl., 50, 273-287 (1975).

[6]




