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1. Introduction. An operator means a bounded linear operator
on a separable Hilbert space H. An operator T is called quasinormal
if T commutes with T*T, subnormal if T has a normal extension and
hyponormal if [T*, T1=0 where [S, T1=ST—T7S. The inclusion rela-
tion of these classes of non-normal operators listed above is as fol-
lows:

Normal C Quasinormal £ Subnormal C Hyponormal
the above inclusions are all proper [7, Problem 160, p. 101].

The familiar Fuglede-Putnam theorem asserts that AX=XB im-
plies A*X =XB* when A and B are normal operators [1][8][9]. Asa
generalized version of this Fuglede-Putnam theorem, we show that let
A and B* be hyponormal and let C be hyponormal commuting with A*
and also let D* be hyponormal commuting with B respectively, then
for every Hilbert-Schmidt operator X, the Hilbert-Schmidt norm of
AXD+CXB is greater than or equal to the Hilbert-Schmidt norm of
A*XD* + C*XB*. In particular, AXD=CXB implies A*XD*
=C*XB*. If we strengthen the hyponormality conditions on A, B*,
C and D* to quasinormality, we can relax Hilbert-Schmidt operator
of the hypothesis on X to be every operator and still retain the ine-
quality under suitable hypotheses.

In this paper we show Theorem 1 and also Theorem 2 by integrat-
ing the results in [2]-[5] and [10].

2. Statement of results. Theorem 1. Let A and B* be hypo-
normal on H. Let C be hyponormal commuting with A* and also D*
be hyponormal commuting with B respectively. Then

(i) |AXD+CXB|,=||A*XD* + C*XB¥*|,
holds for every X in Hilbert-Schmidt class. Equality in (x) holds for
every X in Hilbert-Schmidt class when A, B, C and D are all normal.

(ii) If X is an operator in Hilbert-Schmidt class such that AXD
=CXB, then A*XD*=C*XB*.

Corollary 1. Let A and B* be hyponormal on H. Let C be nor-
mal commuting with A and also let D be normal commuting with B

*  Dedicated in deep sorrow to the memory of the late Professor Teishird
Saito.



56 T. FURUTA [Vol. 58(A),

respectively. Then

(i) |AXD+CXB|,=||A*XD*+ C*XB*||,
holds for every X in Hilbert-Schmidt class. Equality in (x) holds for
every X in Hilbert-Schmidt class when A and B are both normal.

(ii) If X is an operator in Hilbert-Schmidt class such that AXD
=CXB, then A*XD*=C*XB*.

Definition 1. Let [S, T, denote the following ‘“*-commutator” :

[S, T1,=ST—TS*
this *-commutator is completely different from usual commutator
[S, T1.

Definition 2. Let S; denote the positive square root of [T*, T']
for hyponormal operator T'.

Theorem 2. Let A and B* be quasinormal on H. Let C be quasi-
normal such that commutes with A and satisfies [A, S.l,=I[C, S 1, and
also let D* be quasinormal such that commutes with B* and satisfies
[B*, Syl =[D*, Spily respectively. Then

(i) (x%) |AXD+CXB|,2 || A*XD*+C*XB*|,
holds for every X in B(H). Equality in (xx) holds for every X in B(H)
when A, B, C and D are all normal.

(i) If X is an operator such that AXD=CXB, then A*XD¥%*
=C*XB*,

Corollary 2. Let A and B* be quasinormal on H. Let C be nor-
mal commuting with A and also D be normal commuting with B re-
spectively. Then

(1) (%) |AXD+CXB|,=|| A*XD*+C*XB*||,
holds for every X in B(H). FEquality in (xx) holds for every X in B(H)
when A, B, C and D are all normal.

(ii) If X is an operator such that AXD=CXB, then A*XD¥*
=C*XB*,

Remark. If we strengthen on X to be in Hilbert-Schmidt class
in Corollary 2, then we can relax quasinormality of the hypotheses on
A and B* to hyponormality and still retain the inequality, that is, just
Corollary 1.

Proofs and details will appear in [5] together with some results.
This paper is closely related to Goya and Sait6 [6]. Here the author
would like to dedicate in much sorrow to the late Prof. Teishird Sait6
and he should like to read mass for the repose of his soul.
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