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1. Introduction. An operator means a bounded linear operator
on a separable Hilbert space H. An operator T is called quasinormal
i T commutes with T’T, subnormal if T has a normal extension and
hyponormal if [T*, T]>=0 where [S, T]--ST--TS. The inclusion rela-
tion of these classes of non-normal operators listed above is as ol-
lows"

Normal Quasinormal Subnormal Hyponormal
the above inclusions are all proper [7, Problem 160, p. 101].

The familiar Fuglede-Putnam theorem asserts that AX-XB im-
plies A*X--XB* when A and B are normal operators [1] [8] [9]. As a
generalized version of this Fuglede-Putnam theorem, we show that let
A and B* be hyponormal and let C be hyponormal commuting with A*
and also let D* be hyponormal commuting with B respectively, then
for every Hilbert-Schmidt operator X, the Hilbert-Schmidt norm of
AXD/CXB is greater than or equal to the Hilbert-Schmidt norm of
A*XD* - C*XB*. In particular, AXD CXB implies A*XD*
=C*XB*. If we strengthen the hyponormality conditions on A, B*,
C and D* to quasinormality, we can relax Hilbert-Schmidt operator
of the hypothesis on X to be every operator and still retain the ine-
quality under suitable hypotheses.

In this paper we show Theorem 1 and also Theorem 2 by integrat-
ing the results in [2]-[5] and [10].

2. Statement of results. Theorem 1. Let A and B* be hypo-
normal on H. Let C be hyponormal commuting with A* and also D*
be hyponormal commuting with B respectively. Then

( i ) (.) IIAXD-CXBII2_IIA*XD*-C*XB*II.
holds for every X in Hilbert-Schmidt class. Equality in (.) holds for
every X in Hilbert-Schmidt class when A, B, C and D are all normal.

(ii) If X is an operator in Hilbert-Schmidt class such that AXD
--CXB, then A*XD*--C*XB*.

Corollary 1. Let A and B* be hyponormal on H. Let C be nor-
mal commuting with A and also let D be normal commuting with B

*) Dedicated in deep sorrow to the memory of the late Professor Teishir
Sait.
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respectively. Then
( ) (,)

holds for every X in Hilbert-Schmidt class. Equality in (,) holds for
every X in Hilbert-Schmidt class when A and B are both normal.

(ii) If X is an operator in Hilbert-Schmidt class such that AXD
=CXB, then A*XD*=C*XB*.

Definition 1. Let [S, T], denote the following "*-commutator""
[S, T], -ST- TS*

this *-commutator is completely different from usual commutator
[S, T].

Definition 2. Let Sr denote the positive square root of IT*, T]
for hyponormal operator T.

Theorem 2. Let A and B* be quasinormal on H. Let C be quasi-
normal such that commutes with A and satisfies [A, Sc], =[C, S,], and
also let D* be quasinormal such that commutes with B* and satisfies
[B*, S.], [D*, Sz.], respectively. Then

(i) (**) IIAXD+CXBII.>=IIA*XD*+C*XB*I
holds for every X in B(H). Equality in (**) holds for every X in B(H)
when A, B, C and D are all normal.

(ii) If X is an operator such that AXD=CXB, then A*XD*
-C*XB*.

Corollary 2. Let A and B* be quasinormal on H. Let C be nor-
mal commuting with A and also D be normal commuting with B re-
spectively. Then

(i) (**) IIAXD+CXBIIzIIA*XD*+C*XB*II.
holds for every X in B(H). Equality in (**) holds for every X in B(H)
when A, B, C and D are all normal.

(ii) If X is an operator such that AXD=CXB, then A*XD*
=C*XB*.

Remark. If we strengthen on X to be in Hilbert-Schmidt class
in Corollary 2, then we can relax quasinormality of the hypotheses on
A and B* to hyponormality and still retain the inequality, that is, just
Corollary 1.

Proofs and details will appear in [5] together with some results.
This paper is closely related to Goya and Sait5 [6]. Here the author
would like to dedicate in much sorrow to the late Prof. Teishir5 Sait5
and he should like to read mass or the repose of his soul.
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