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§1. Introduction. This note is a continuation of our previous
paper [1]. Let 2 be a bounded domain in R? with £~ boundary y and
w be a fixed point in £. For any sufficiently small ¢>0, let B, be the
ball defined by B,={z e 2;|2—w|<e}. Let 2, be the bounded domain
defined by 2,=2\B,. Then 2,=yUdB,.

Let 0> p(e)>p(e)> - - - be the eigenvalues of the Laplacian in £,
under the Dirichlet condition on 32,. Let 0>y, >u,> - - - be the eigen-
values of the Laplacian in £ under the Dirichlet condition on y. We
arrange them repeatedly according to their multiplicities.

The aim of this note is to give an asymptotic expression of y,(e)
as ¢ tends to zero. We need some notations to state the main result.

Let G(z, ¥) be the Green function of the Laplacian in 2 satisfying

4,G(x,y)=—dx—y) w,yel,

G, Y lpe; =0 yel.
Then the Robin constant r (=z(w)) at w is defined by

r=1im (G(zx, w) —(4z)* |z —w|?).

x-w

Let G be the Green operator defined by
1.1 @N@=| 6@ viwiy

for x e Q.
We have the following

Theorem 1. Fix j. Assume that the multiplicity of p; is one,
then
1.2) u(e)— py,= —(z+(4re) ) o (w)
‘ —(c+(4ne) ™) "¢ (w)gp,(w) + O(E™)
as ¢ tends to zero. Here ¢fx) denotes the eigenfunction of the
Laplacian under the Dirichlet condition on y satisfying

L o (xy;dr=1.
And here
1.3) e (w)=lim (G(x, w)p,(w)+(x)),

oW

where € LX) is the unique solution of

1.9 (G+QA/p)¥)@)=—Q]p)G(@, w)p(w)— (1] o w) o ()
and



6 S. OzAwA [Vol. 58(A),

(1.5) L V@) (@)dw=0.

Remarks. The remainder term in (1.2) is not uniform with re-
spect to 7. The above formula (1.2) is a refinement of the formula
(1.2) in [1]. See also [3], [2]. From (1.4) it is easily seen that
G(x, w)p,(w)+(x) is continuous with respect to x.

In § 2 we give a rough sketch of our proof of Theorem 1. Details
of this paper will appear elsewhere.

§2. Sketch of proof of Theorem 1.

Step 1. Let ¢ be as before. Put ¢*=(c+(4ne)")"'. Put g,={x
eR; G(x,w)>e*"'} and w,=2\p.. Then it is easy to see that there
exists a constant C (>0) independent of ¢ satisfying
2.1 2,.06C0,C 2, _c.s.

Let 0>74,(e)>--->je)- - - be the eigenvalues of the Laplacian in
w, under the Dirichlet condition on dw,. If we prove
(2.2) f4(&) — py= —e*@,(w) —(e*)e,(w)p(w) + O(e*)
when the multiplicity of g, is one, then we get (1.2) because of (2.1).
Thus we have only to prove (2.2) to obtain Theorem 1.

Step 2. Put G®(x, ¥)=G(«x,y) and

G0, =] G, GG, 1z
]
inductively. We define the symbol <V, V,> by the following :

3
(7 o0l w), 7 b (y, w)y =37 2% (5, w)-22
i=1 oW, ow;

We now introduce the integral kernel 4,(z, ) by the following :
h(z,y)=G(z, y)—e* i G (z, w)G*~ " (y, w)
k=1

(Y, w).

(2.3) —4ze’ kil F.G®(w, w), VG4 (y, w))E(2)E(y)

+(e*) G (w, w) ZZ_I GOz, w)GC(y, w)

+(EPGO(w, w)G(x, w)G(Y, w),
where £,(2) e C°(22) is a function satisfying [£,(x)|<1, &(x)=0 for
X € By E2)=1 for = € ® ..
Let H, be the operator given by

(2.9 (H. f)(x)= . h(z, ) f(y)dy
for x e w,. And let G, be the operator given by
(2.5) (G.9)(x)= ) G(x, V) g(y)dy

for x ¢ w,, where G(«,y) be the Green kernel of the Laplacian in o,
under the Dirichlet condition on dw,.

We have the following

Proposition 1. There exists a constant C>0 independent of e
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such that
(2.6) |G —H, |10,y < Ce™
holds, where || T|,a., denotes the operator norm of T.
We need hard and laborious calculations including L*-spaces to
get (2.6).
Step 3. Let H, be the operator given by

@.7) (ﬁ‘g)(x)=jo hdz, )o(w)dy

for x e Q.

We here construct an approximate eigenvalue and an approximate
eigenfunction of H,. Put 2=—1/g, and 2,= —32,(w)>. We consider
the following equations:

(2.8) (G—DD(x) = 2p, (W) G(x, W) — Ap (w)p (),

2.9) j D(@)p (@)de =0,

Since G—2 is the operator of Fredholm type, the unique solution
@ in L*(Q) of (2.8), (2.9) exists. Put

Ao = 2o (W)(22G P (w, w)+ G (w, w)) — 2p(w) io G D) (w).
k=
Then consider the equations:
(G3—Z“’)W(x)=lzsoj(w)+21®(w)+i} G**O(x, wXG* D) w)
k=0

(2.10) _(fi GO, w)GO(w, w)

+1G(z, w)G®(w, W))so/('w)
and
(2.11) L U(@)p,()dw=0.

We see that (2.10), (2.11) have the unique solution ¥ in L*£). Now
put i(e) =2 +e*2,+(e*)2, and @(e) =g, +e*@+(c*)*¥. We have the fol-
lowing

Proposition 2. There exists a constant C>0 independent of e
such that

(2.12) (| CH,— 2())3(E) || 12a) < O
holds.

Let x(¢) be the characteristic function of w,. Then we can prove
(2.13) | x(e) H () — H (x()@(e)) || 120y < Ce™*

for a constant C independent of e.
By (2.6), (2.12) and (2.13) we get the following
Proposition 3. The inequality

(2.14) (G — AN p(e) | aguyy < Ce*

holds.
As a consequence of (2.14), we conclude the following
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Proposition 4. There exists at least one eigenvalue 1*(e) of G,
satisfying
(2.15) (e =2 +e*2,+(c*)2,+ 0(e7%)
as ¢ tends to zero.

By the result of Rauch-Taylor [4], we see that there exists exactly
one eigenvalue 1*(¢) of G, satisfying (2.15). Therefore, (2.2) is proved.
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