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123. A Note on Non.Singular Morse.Smale Flows on S*

By Koichi YAN0
Department of Mathematics, Faculty of Science, University of Tokyo.

(Communicated by Shokichi IYANAGA, M. $. A., Dec. 13, 1982)

In this note,, we, prove the, following
Theorem 1.**) Every non-singular Morse-Smale flow on S has

at least two unknotted closed orbits.
For definitions of non-singular Morse-Smale flows (NMS for short)
and round handle decompositions (RHD or short) and relations be-
tween them, see Morgan [1]. A closed orbit of an NMS of S is
attracting, hyperbolic and repelling if the dimension of the unstable
manifold is equal to one, two and three respectively. A hyperbolic
closed orbit is untwisted i the unstable manifold is orientable and
twisted otherwise.

I an NMS has twisted hyperbolic closed orbits, it can be changed
near them as shown in Fig. 1, so that the new flow becomes an NMS
without twisted hyperbolic closed orbits and the, link consisting of
attracting and repelling closed orbits of the new flow is a sublink of
the link of all closed orbits of the old NMS.

///

Fig. I

This says that Theo,rem 1 above is a corollary to,

Theorem 2. Every non-singular Morse-Snale flow on S without
twisted hyperbolic closed orbits has at least two unknotted closed

*) Partially supported by the Sakkokai Foundation.
**) M. Wada recently obtained a characterization of links which are closed

orbits of NMS’s on S, which includes this result as a corollary.
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orbits, each o[ which is attracting or repdling.
In the sequel, hyperboliz closed orbits, henze round l-handles are

assumed to be untwisted. Then here are the 2ollowing 11 types
the ways o2 attazhing round l-handles to the boundary consisting
tori.
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Fig. 2
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Lemma 1. Every round 1-handle of an RHD of S is of types (1),
(2), (4), (5), (7)or (10).

Proof. Types (3) and (8) yield embedded spheres transverse to
the flow and types (6), (9) and (11) yield embedded Klein bottles, and
thus these types are excluded. Other ways of attaching imply that
the boundary of the resulting manifold consists again of tori. Thus,
by induction, we get the lemma.

For a given RHD of S, we can fatten up round 1-handles, i.e.
affix collars of components of boundary tori which it is actually
attached to, and then get a new decomposition of S (Morgan [1]).
Topological types of fattened round 1-handles are as follows" (two
punctured disk)S for a round 1-handle of type (1) or (5), TI
S D for type (2) or (10), T I # T I for type (4), and S D S D
for type (7).

We say that a decvmposition 2 of S (or its 3-dimensional compact
submanifold) is RHD-like if is obtained by cutting S (or submani-
fold) along disjointly embedded tori, and each connected component
of is either a solid torus or one of the manifolds listed above. Then
Theorem 2 is reduced to

Proposition. Every RHD-like decomposition of S contains at
least two unInotted solid tori.
We let d(_q)) denote the number of cmponents of _q) which are not
solid to.ri, and prove this proposition by induction on d(_q)).

Lemma 2. If consists of three solid tori and one (two punctured
disk) S, then the proposition holds.

Proof. The natural S-action on (two punctured disk) S extends
to. whole o S. If this action has a fixed point, then every S-orbit
and the fixed point set is unknotted in S and thus the lemma follows.
Otherwise, it gives a Seifert fibred structure of S. Since any singular
fibre is the core of some solid torus o.f 2, the classification of Seifert
fibred structures of S implies the result.

Proof of Proposition. This is obvious if d())--O. Suppose now

that this proposition is verified when d())_k. Then we have

Assertion. Let S DS be an embedded solid torus and ’ be
an RHD-like decomposition of SS-int (StD) with d(’)_k. Then, if
SD is unlnotted, ’ contains at least one solid torus unknotted in
S and if S D is knotted, ’ contains at least two unknotted solid tori.

Let _q) be an RHD-like decomposition of S with d())=k+l and take
a componen H e _q) which is not a solid torus.

Case 1. H(two punctured disk) S. Let A, A. and A denote
the components o.f S-int H. Since 3A is a to.rus, either A is a solid
torus or H [J A (2 A is a knotted solid torus. In the latter case, Asser-
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tion implies that A contains at least two unknotted solid tori. Apply-
ing this argument also to A and A, we can assume that each A is a
solid torus. Then Lemma 2 says that at least two o A’s are un-
knotted. Again by Assertion, we know that each unknotted A contains
at least one unknotted solid torus in S, and thus we are done.

Case 2. H-T I # S D. There is a component B of SMnt H
such that H ( B is T I. We can delete components in H J B from
and get a new RHD-like decomposition _q)’ of S with d(_q)’)_/c. Thus
we are done.

Case 3. H- T I # T I. Same as in Case 2.
Case 4. H-S D S D. Let C and C denote the components

of S-int H. Since H iJ C. is a solid torus, Assertion implies that C
contains at least one unknotted solid torus. So does C by the same
reason and thus we are done.
This completes the induction and we get the required result.

The author wishes to thank Prof. I. Tamura or suggesting
this problem.
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