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115. Eigenvalues of the Laplacian an Wildly
Perturbed Domain

By Shin OzwA
Department of Mathematics, University of Tokyo

(Communicated by K.6saku YOSIDA, M. J. A., Dec. 13, 1982)

We remove m balls with centers tCw()= and radius o/m from a
bounded domain /2 in R with smooth boundary ,. If m balls are
dispersed in a specific configuration as m, then. we can give a
precise asymptotic behaviour of the k-th eigenvalue of the Laplacian
in 9kin balls under the Dirichlet condition on its boundary. Our
method is based on perturbational calculus.

By w(m) we denote w A sequenc {w(m)}= satisfying the
following conditions (C-l), (C-2) is said to be of class 0"

(C-l) There exists a constant C>0 inde.pendent of m such that

w ,,, >Cm-’’ (i# i)
dist (w},RD)Cm- (1]m).

(C-2) Fix 0<pl. Then, there exists a constant C, independe.nt
of m such that

holds for any f e C(/2).
9 satisfying

Moreover,

Here V(x) is a non-negative C function on

V(x)dx= 1.

max 1 f(w)) _; V(y)f(y) dy.t<Cm_,l]fl[o,
lCj

(o<a).
,,,1<}. Let 0<Z,( w(m))We put B(; w})={x e R’; [,--

Z(; w(m)).., be the eigenvalues o -d (=-div grad) in
< We arrange--9B(e; w ) under the Diriehlet condition on

them repeatedly according to their multiplicities. Let Z be the k-th
eigenvalue o* --+duV(x) in 9 under the Diriehlet condition on
The main re.suit o this paper is the *ollowing"

Theorem 1. Fix >0. Suppose $ha$ {w(m)}=, is of class
Then, Z(/m w(m)) ends o as m. Moreover,

{Z[-Z(/m w(m))lC,m’-/

holds, where ’ is an arbitrary small fized positive number.
Remark. It should be remarked that the, sum o the radius
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m-balls is a or any m.
We explain the main idea o our proof o Theore.m 1. Let

G(x, y;w(m)) be the Green unction o.t the Laplacian in
under the Dirichlet condition on its boundary. It. satisfies

z1G,(x, y; w(m)) -((x-y) or x, y e
and G(x, y w(m))-- 0 or x e t,/,(). Hereafter we abbreviate
as w, or the sake o simplicity. We put

h,(x, y; w(m))

-G(x, y)-t- (-4ua/m) () G(x, w,)G(w,, w). .G(w._,
8=1

G(w,, y).
Here the indices (i, ..., i) in () run over all 1_i, ..., i_m satisfy-
ing i#-i, i.#i, ..., i_ #-i. Let G (resp. H) be the integral operator
whose integral kernel unction is G(x, y; w(m)) (resp. h(x, y; w(m)).
Let IITII.; denote the operator norm of a bounded linear operator T
on the space of square integrable unctions on t9,/,(). A key to
our Theorem 1 is the ollowing"

Proposition 1. For a constant C, independent of {w(m)}7= e (C),
[IG--H[l;C,m-+’q,.

holds for any ’0, where
--1

q,. 1 + (4o) :+(4:o:)m.

Here

H converges to

x=sup(m-’maxm lgr<_m
G(wt’ Wr))"

G+ (--4ra)G(VG)

when a is small, which is a left inve.rse of -z+4uaV. Along this
line, we get Thevrem I when a is small. We need a slight modifica-
tion o our proof o.r gene.ral a.

When m=1, h reduces to. the inte.gral kernel unction h,(x, y) on
p. 771 of Ozawa [7]. By using this integral kernel function, we..
gave an asymptotic ormula for eigenvalues o the Laplacian under
singular variation o domains. For any lmo, we can also prove
the asymptvtic formulas or eigenvalues by using h. Observing
Therem 1 we.. can say that h is a nice asymptotic Gree.n’s unction
or all m= 1, 2, ., c.

We make a historical remark. By purely analytic method,
Huruslov-Marchenko [4] studied various boundary value problems in
a region with many small holes. See also Huruslov [3]. Their method
is not perturbational and is potential theoretic. It seems to the author
that our approach to "many small holes problems" based on pertur-
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bational calculation is new. There are papers concerning Theorem
1. Kac [5] treated eigenvalue problems in a region with many small
holes in a probabilistic context. See also Rauch-Taylor [10],
Papanicolaou-Varadhan [9] in which many interesting results were
shown. See also. Simon [11], Lions [6], Bensoussan-Lions-Papanicolaou
[1] and Cioranescu [2].

Details of this paper will be given in Ozawa [8].
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