115. Eigenvalues of the Laplacian on Wildly Perturbed Domain

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosipa, M.J.A., Dec. 13, 1982)

We remove m balls with centers $\{w_i^{(m)}\}_{i=1}^m$ and radius α/m from a bounded domain Ω in \mathbb{R}^3 with smooth boundary γ . If m balls are dispersed in a specific configuration as $m \rightarrow \infty$, then we can give a precise asymptotic behaviour of the k-th eigenvalue of the Laplacian in Ω m balls under the Dirichlet condition on its boundary. Our method is based on perturbational calculus.

By $w(m)$ we denote $\{w_i^{(m)}\}_{i=1}^m$. A sequence $\{w(m)\}_{m=1}^{\infty}$ satisfying the following conditions (C-1), (C-2) is said to be of class \mathcal{O} :

(C-1) There exists a constant $\tilde{C}>0$ independent of m such that

$$
\begin{array}{ll} |w_i^{\scriptscriptstyle(m)}-w_j^{\scriptscriptstyle(m)}|\!\geq\!\tilde Cm^{-{\scriptscriptstyle 1/3}} & \text{\quad\quad} (j\!\neq\! i)\\ \text{dist}\,(w_j^{\scriptscriptstyle(m)},R^{\scriptscriptstyle 3}\langle\varOmega)\!\geq\!\tilde Cm^{-{\scriptscriptstyle 1/3}} & \text{\quad\quad} (1\!\leq\! j\!\leq\! m).\end{array}
$$

 ${\rm dist}\, (w_j^{\scriptscriptstyle(m)}, R^{\scriptscriptstyle 3} \backslash {\mathit \Omega}) \!\ge\! \tilde C m^{-1/3} \qquad (1 \!\le\! j \!\le\! m). \nonumber \ \text{(C-2)} \quad {\rm Fix}\, 0 \!<\! p \!\leq\! 1. \quad \text{Then, there exists a constant C_p independent}$ of m such that

$$
\left| \frac{1}{m} \sum_{j=1}^m f(w_j^{(m)}) - \int_a f(x) V(x) dx \right| \leq C_p m^{-p/3} ||f||_{C^p(\Omega)}
$$

holds for any $f \in C^p(\Omega)$. Here $V(x)$ is a non-negative C^1 function on \overline{Q} satisfying

$$
\int_{a} V(x)dx=1.
$$

Moreover,

$$
\max_j \left| \frac{1}{m} \sum_{1 \leq i \leq m \atop i \neq j} \frac{f(w_i^{(m)})}{|w_i^{(m)} - w_j^{(m)}|} - \int_{\rho} \frac{V(y)f(y)}{|y - w_j|} dy \right| \leq C_p m^{-p \sigma/3} ||f||_{C^p(\rho)}, \tag{0 < \sigma \leq 1}.
$$

We put $B(\varepsilon; w_j^{(m)}) = \{x \in \mathbb{R}^3; |x-w_j^{(m)}| \leq \varepsilon\}.$ Let $0 \leq \mu_1(\varepsilon; w(m))$ $\leq \mu_2(\varepsilon; w(m)) \leq \cdots$ be the eigenvalues of $-d$ (=-div grad) in $\Omega_{\varepsilon,w(m)}$ $= \Omega \backslash \overline{B(\varepsilon; w_j^{(m)})}$ under the Dirichlet condition on $\partial \Omega_{\varepsilon, w(m)}$. We arrange them repeatedly according to their multiplicities. Let μ_k^v be the k-th eigenvalue of $-\frac{A+4\pi\alpha V(x)}{n}$ in Ω under the Dirichlet condition on γ . The main result of this paper is the following:

Theorem 1. Fix $\alpha > 0$. Suppose that $\{w(m)\}_{m=1}^{\infty}$ is of class \mathcal{O} . Then, $\mu_k(\alpha/m$; $w(m))$ tends to μ_k^V as $m\rightarrow\infty$. Moreover,

$$
|\mu_k^V - \mu_k(\alpha/m \,;\, w(m))| \leq C_{\epsilon'} m^{\epsilon'-\sigma/6}
$$

holds, where ϵ' is an arbitrary small fixed positive number.

Remark. It should be remarked that the sum of the radius

m-balls is α for any m .

We explain the main idea of our proof of Theorem 1. Let $G_m(x, y; w(m))$ be the Green function of the Laplacian in $Q_{\alpha/m, w(m)}$ under the Dirichlet condition on its boundary. It satisfies

 $\Delta_x G_m(x, y; w(m)) = -\delta(x-y)$ for $x, y \in \Omega_{a/m, w(m)}$ and $G_m(x, y; w(m))=0$ for $x \in \partial \Omega_{\alpha/m,w(m)}$. Hereafter we abbreviate $w_i^{(m)}$. as w_i for the sake of simplicity. We put

$$
h_m(x, y; w(m))
$$

= $G(x, y) + \sum_{s=1}^m (-4\pi\alpha/m)^s \sum_{(s)} G(x, w_{i_1}) G(w_{i_1}, w_{i_2}) \cdots G(w_{i_{s-1}}, w_{i_s}) \times G(w_{i_s}, y).$

Here the indices (i_1, \dots, i_s) in $\sum_{(s)}$ run over all $1 \leq i_1, \dots, i_s \leq m$ satisfying $i_1\neq i_2, i_2\neq i_3, \dots, i_{s-1}\neq i_s$. Let G_m (resp. H_m) be the integral operator whose integral kernel function is $G_m(x, y; w(m))$ (resp. $h_m(x, y; w(m))$). Let $||T||_{2,m}$ denote the operator norm of a bounded linear operator T on the space of square integrable functions on $Q_{\alpha/m,w(m)}$. A key to our Theorem 1 is the following:

Proposition 1. For a constant C_i , independent of $\{w(m)\}_{m=1}^{\infty} \in \mathcal{O}$,

$$
\|\boldsymbol{G}_m\!-\!\boldsymbol{H}_m\|_{2;\,m}\!\leq\!C_{\epsilon'}m^{-1+\epsilon'}q_{m,\,a}
$$

holds for any $\varepsilon' > 0$, where

$$
q_{m,\alpha}=1+\sum_{s=1}^{m-1}(4\pi\alpha)^{s+1}\kappa^s+(4\pi\alpha\kappa)^m m.
$$

Here

$$
\kappa\!=\!\sup_{m}\Big(m^{-1}\max_{i}\sum_{1\leq r\leq m\atop r\neq i}G(w_i,w_r)\Big)\!.
$$

 H_m converges to

$$
G+\sum_{s=1}^{\infty}(-4\pi\alpha)^sG(VG)^s
$$

when α is small, which is a left inverse of $-\beta + 4\pi\alpha V$. Along this line, we get Theorem 1 when α is small. We need a slight modification of our proof for general α .

When $m=1$, h_m reduces to the integral kernel function $h_a(x, y)$ on p. 771 of Ozawa [7]. By using this integral kernel function, we. gave an asymptotic formula for eigenvalues of the Laplacian under
singular variation of domains. For any $1 \leq m \leq \infty$, we can also prove the asymptotic formulas for eigenvalues by using h_m . Observing Theorem 1 we can say that h_m is a nice asymptotic Green's function for all $m=1, 2, \dots, \infty$.

We make ^a historical remark. By purely analytic method, Huruslov-Marchenko [4] studied various boundary value problems in a region with many small holes. See also Huruslov [3]. Their method is not perturbational and is potential theoretic. It seems to the author that our approach to "many small holes problems" based on pertur-

bational calculation is new. There are papers concerning Theorem 1. Kac [5] treated eigenvalue problems in a region with many small holes in a probabilistic context. See also Rauch-Taylor [10], Papanicolaou-Varadhan [9] in which many interesting results were shown. See also Simon [11], Lions [6], Bensoussan-Lions-Papanicolaou [1] and Cioranescu [2].

Details of this paper will be given in Ozawa [8].

References

- [11 A. Bensoussan, J. L. Lions, and G. C. Papanicolaou: Asymptotic Methods in Periodic Structures. North-Holland, Amsterdam (1978).
- [2] D. Cioranescu: Calcul des variations sur des sous-espaces variables, applications. C. R. Acad. Sci. Paris., 291, 87-90 (1980).
- [3] E. Ja. Huruslov: The method of orthogonal projections and the Dirichlet problem in domains with fine-grained boundary. Math. U.S.S.R. Sbornik., 17, 37-59 (1972).
- [4] E. Ja. Huruslov and V. A. Marchenko: Boundary Value Problems in Regions with Fine-grained Boundaries. Kiev (1974) (in Russian).
- [5] M. Kac: Probabilistic method in some problems of scattering theory. Rocky Mountain J. Math., 4, 511-538 (1974).
- [6] J. L. Lions: Some Methods in the Mathematical Analysis of Systems and Their Control. Gordon and Breach, New York (1981).
- [7] S. Ozawa: Singular variation of domains and eigenvalues of the Laplacian. [7] S. Ozawa: Singular variation of domains and eigenvalues of the Laplacian.

Duke Math. J., 48, 767–778 (1981).

[8] ——: Point interaction potential approximation for $(-4+U)^{-1}$ and eigen-

volue of the Laplacian on wil Duke Math. J., 48, 767-778 (1981).
- value of the Laplacian on wildly perturbed domain (preprint).
- [9] G. C. Papanicolaou and S. R. S. Varadhan: Diffusion in region with many small holes. Lecture Notes in Control and Information, Springer, 75, 190- 206 (1980).
- [10] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).
- [11] B. Simon: Functional Integration and Quantum Physics. Academic Press (1979).