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90. On Homotopy Self-Equivalences of the Product AXB

By Yutaka ANDO*) and Kohhei YAMAGUCHI**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1982)

§ 1. Introduction. The set of homotopy classes of self-homotopy
equivalences of a CW-complex X, which is denoted by G(X), forms a
group with the multiplication defined by the composition of maps.
This group G(X) has been studied by many authors since M. Arkowitz
and C. R. Curjel’s paper [1] was published in 1964. In particular,
the group G(A X B) was considered by A. J. Sieradski in [4] for two
connected H-spaces A and B, by N. Sawashita in [3] for the case of a
product of spheres S™xS"; also S. Sasao and one of the authors
studied the group G(K(z,1)x X) in [2] for a simply-connected CW-
complex X. The purpose of this paper is to investigate the group
G(A X B), and especially to generalize the results of [2].

Throughout this paper we use the following notations. For two
based CW-complexes (X, z,) and (Y, y,), we denote by X* the space of
all continuous based maps from Y to X with the compact open topology,
and by [Y, ¥,; X, 2]=[Y, X]=r,(X") the set of path-components of X*.
If G is a monoid, Inv (G) denotes the group consisting of invertible
elements of G. Let pr,: AXB—A and pr,: A X B—B be the natural
projections to the first factor and to the second factor, respectively.

Our main theorem states:

Theorem. Let A and B be CW-complexes satisfying

(a) [B,Al=[AAB, Al={0}, and

(b) B is simply-connected.

Then there is a split exact sequence :
1—>Inv ([4, a,; B3, id,;)—>G(A X B)—>G(A) X G(B)—>1.
Corollary. Under the same assumptions as Theorem,
GAXB)=GA)XGB) if Inv ([A, a,; B2, id ) =1.
Example. If B is simply-connected, there is a split exact se-
quence :
1——> (B3, id )t (z, (B2, idp) X 7,(B?, id))——>G(T* X B)
—>GL(Z) X G(B)—>1,
where T° denotes the two dimensional torus S'xS' and # denotes a
semi-direct sum.

Remark. If B is an H-space or a co H-space, then we have

=, (B id;)~[SB, B].
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§2. Lemmas. We define the multiplication X : A4*Bx A4*?
—A4%2 by
(fx9)a, b)=f(9(a, b),b)  for f,g9e€ A*** and (a,b) € A XB.
Then it is easy to see that (44*%, X) is a monoid with the unit pr,.
Similarly, we define the multiplication & : (A4%2 x B4*E)2_ A4%XEx B4XEB
by
f®g= (f1(91 92), (91, 95)) for f=(f1, [, 9= (91, 92) € A4*BX B4*3B,
Then it is also easy to see that (A4%%x B4*%, ®) is a monoid with the
unit (pr,, pry). Let 5: (4 XB)**?*—-A4%?x B4*? be the natural homeo-
morphism defined by
p(f)=@r o f, pryo f)  for fe(AXB)**2
If we consider the space (A X B)4*2 as a monoid with the multiplica-
tion induced from the composition of maps, it is clear that the map
7: ((A X B)4*2, o )—>(A4*Ex B4*5, ®)
is an isomorphism of topological monoids. Since
G(A X B)=1Inv (z,((A X B)**%, id 1)),
we have the following
Lemma 1. There is the isomorphism of groups:
74 1 GA X B)~Inv (z,(A4*2 X B4%2, (pPr,, Pry))).
Now we define the multiplication X : (44X B4*5)*—A4 X B**% by
(fv gl) %(fw gz)= (f1 °f29 gl(f2 o Pry, gz))
for (f,, 9) € A4XB4*8, ¢=1,2,
Then we have a monoid (44x B4*2, X) with the unit (id,, pry). In
particular, we define the map res: A4*—A“ by
res (f)(a)= f(a, by) for feA“*?andacA,
where b, is the base point of B. Clearly, the map res: A4**—»A4is a
homomorphism of monoids. Here we note the following two lemmas,
which can be proved by the standard arguments.
Lemma 2. The induced homomorphism
Pryy: mo(44, id ) —>m(A4*%, pr )
18 surjective iff [B, Al=[ANAB, A]={0}.
Lemma 3. If pr,,: n,(A4, id,)——>n,(A4*%, pr,) is surjective, then
the induced homomorphism
(resxid), : mo(A**%, pr ) X mo(B4*?, pry)—— (A%, id,) X 7o(B4*?, pry)
18 an isomorphism of monoids.
Then, from the above lemmas we have
Proposition 1. If [B, Al=[AAB, A]1={0}, the sequence
1——Inv (zy(B**3, pry))—>GA X B)—>G(A)—>1
s split exact.
§3. The proof of Theorem. First, we define the map P: B4*®
—B*® by
P(g)(b)=g(a, b) for g e B4*® and b € B.
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Then the map P is a fibration and a homomorphism of monoids.
Furthermore, if we define the map s: B#—B4*% by
s(f)(a, b)= f(b) for fe B? and (a, b) e A XB,
then the map s is a cross section of P. Therefore we have
Proposition 2. The sequence

1—>Tnv ((P-'(d,), pro)—>Inv (r(BA*2, pry)—*>G(B)—>1
18 split exact.
Here we recall the following
Lemma 4. If B is simply connected, then
m(P~'(idp), pry) ~I[A4, a,; B?, id,l.
Secondly we define the maps
¢,: G(A)—>G(AXB),
¢ G(B)—>G(A X B),

and
¢ : G(AXB)—>G(B)
as follows:
¢,(NHa, )=(f(@), b) for f € G(A) and (a, b) e AXB,
¢,(9)(a, b)=(a, g(b)) for g e G(B) and (a, b) ¢ A X B,
and

¢y(R)(b)=prz(h(a, b)) for he G(AXB) and b € B.

Then to prove Theorem, it suffices to show the following lemma, which
is obtained by straight-forward calculations.

Lemma 5. (a) res,oc,=idg-.

(b) Cz0 Cy= idG(B)'

() c¢yot =Py,

(d) The maps c, and c, are homomorphisms.

() The map ¢, is @ homomorphism if [B, A]={0}.
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