90. On Homotopy Self-Equivalences of the Product $A \times B$

By Yutaka ANDO*) and Kohhei YAMAGUCHI**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1982)

§ 1. Introduction. The set of homotopy classes of self-homotopy equivalences of a *CW*-complex *X*, which is denoted by G(X), forms a group with the multiplication defined by the composition of maps. This group G(X) has been studied by many authors since M. Arkowitz and C. R. Curjel's paper [1] was published in 1964. In particular, the group $G(A \times B)$ was considered by A. J. Sieradski in [4] for two connected *H*-spaces *A* and *B*, by N. Sawashita in [3] for the case of a product of spheres $S^m \times S^n$; also S. Sasao and one of the authors studied the group $G(K(\pi, 1) \times X)$ in [2] for a simply-connected *CW*-complex *X*. The purpose of this paper is to investigate the group $G(A \times B)$, and especially to generalize the results of [2].

Throughout this paper we use the following notations. For two based *CW*-complexes (X, x_0) and (Y, y_0) , we denote by X^Y the space of all continuous based maps from Y to X with the compact open topology, and by $[Y, y_0; X, x_0] = [Y, X] = \pi_0(X^Y)$ the set of path-components of X^Y . If G is a monoid, Inv (G) denotes the group consisting of invertible elements of G. Let $\operatorname{pr}_A: A \times B \to A$ and $\operatorname{pr}_B: A \times B \to B$ be the natural projections to the first factor and to the second factor, respectively.

Our main theorem states:

Theorem. Let A and B be CW-complexes satisfying

(a) $[B, A] = [A \land B, A] = \{0\}, and$

(b) *B* is simply-connected.

Then there is a split exact sequence:

 $1 \longrightarrow \operatorname{Inv} ([A, a_0; B^B, \operatorname{id}_B]) \longrightarrow G(A \times B) \longrightarrow G(A) \times G(B) \longrightarrow 1.$

Corollary. Under the same assumptions as Theorem,

 $G(A \times B) \simeq G(A) \times G(B)$ if Inv $([A, a_0; B^B, id_B]) = 1$.

Example. If B is simply-connected, there is a split exact sequence:

$$1 \longrightarrow \pi_2(B^B, \operatorname{id}_B) \sharp(\pi_1(B^B, \operatorname{id}_B) \times \pi_1(B^B, \operatorname{id}_B)) \longrightarrow G(T^2 \times B)$$
$$\longrightarrow GL_2(Z) \times G(B) \longrightarrow 1,$$

where T^2 denotes the two dimensional torus $S^1 \times S^1$ and # denotes a semi-direct sum.

Remark. If B is an H-space or a co H-space, then we have $\pi_1(B^B, \operatorname{id}_B) \simeq [SB, B].$

**) Department of Mathematics, Tokyo Institute of Technology.

^{*)} Department of Mathematics, Tokyo University of Fisheries.

§ 2. Lemmas. We define the multiplication $\times : A^{A \times B} \times A^{A \times B}$ $\rightarrow A^{A \times B}$ by

 $(f \times g)(a, b) = f(g(a, b), b)$ for $f, g \in A^{A \times B}$ and $(a, b) \in A \times B$. Then it is easy to see that $(A^{A \times B}, \times)$ is a monoid with the unit pr_A . Similarly, we define the multiplication $\otimes : (A^{A \times B} \times B^{A \times B})^2 \longrightarrow A^{A \times B} \times B^{A \times B}$ by

 $f \otimes g = (f_1(g_1, g_2), f_2(g_1, g_2))$ for $f = (f_1, f_2), g = (g_1, g_2) \in A^{A \times B} \times B^{A \times B}$. Then it is also easy to see that $(A^{A \times B} \times B^{A \times B}, \otimes)$ is a monoid with the unit $(\mathbf{pr}_A, \mathbf{pr}_B)$. Let $\eta : (A \times B)^{A \times B} \rightarrow A^{A \times B} \times B^{A \times B}$ be the natural homeomorphism defined by

 $\eta(f) = (\operatorname{pr}_A \circ f, \operatorname{pr}_B \circ f) \quad \text{for } f \in (A \times B)^{A \times B}.$

If we consider the space $(A \times B)^{A \times B}$ as a monoid with the multiplication induced from the composition of maps, it is clear that the map

 $\eta: ((A \times B)^{A \times B}, \circ) \longrightarrow (A^{A \times B} \times B^{A \times B}, \otimes)$

is an isomorphism of topological monoids. Since

 $G(A \times B) \simeq \operatorname{Inv} (\pi_0((A \times B)^{A \times B}, \operatorname{id}_{A \times B})),$

we have the following

Lemma 1. There is the isomorphism of groups:

 $\eta_*: G(A \times B) \simeq \operatorname{Inv} (\pi_0(A^{A \times B} \times B^{A \times B}, (\mathrm{pr}_A, \mathrm{pr}_B))).$

Now we define the multiplication $\widetilde{\times} : (A^{A} \times B^{A \times B})^{2} \rightarrow A^{A} \times B^{A \times B}$ by

 $(f_1, g_1) \widetilde{\times} (f_2, g_2) = (f_1 \circ f_2, g_1(f_2 \circ \mathbf{pr}_A, g_2))$

for
$$(f_i, g_i) \in A^A \times B^{A \times B}$$
, $i=1, 2$.

Then we have a monoid $(A^{A} \times B^{A \times B}, \widetilde{\times})$ with the unit $(\mathrm{id}_{A}, \mathrm{pr}_{B})$. In particular, we define the map res: $A^{A \times B} \rightarrow A^{A}$ by

res
$$(f)(a) = f(a, b_0)$$
 for $f \in A^{A \times B}$ and $a \in A$,

where b_0 is the base point of *B*. Clearly, the map res: $A^{A \times B} \rightarrow A^A$ is a homomorphism of monoids. Here we note the following two lemmas, which can be proved by the standard arguments.

Lemma 2. The induced homomorphism

$$\operatorname{pr}_{A*}: \pi_0(A^A, \operatorname{id}_A) \longrightarrow \pi_0(A^{A \times B}, \operatorname{pr}_A)$$

is surjective iff $[B, A] = [A \land B, A] = \{0\}.$

Lemma 3. If $\operatorname{pr}_{A*}: \pi_0(A^A, \operatorname{id}_A) \longrightarrow \pi_0(A^{A \times B}, \operatorname{pr}_A)$ is surjective, then the induced homomorphism

 $(\operatorname{res} \times \operatorname{id})_* : \pi_0(A^{A \times B}, \operatorname{pr}_A) \times \pi_0(B^{A \times B}, \operatorname{pr}_B) \longrightarrow \pi_0(A^A, \operatorname{id}_A) \times \pi_0(B^{A \times B}, \operatorname{pr}_B)$ is an isomorphism of monoids.

Then, from the above lemmas we have

Proposition 1. If $[B, A] = [A \land B, A] = \{0\}$, the sequence

 $1 \longrightarrow \operatorname{Inv} (\pi_0(B^{A \times B}, \operatorname{pr}_B)) \longrightarrow G(A \times B) \longrightarrow G(A) \longrightarrow 1$ is split exact.

§ 3. The proof of Theorem. First, we define the map $P: B^{A \times B} \to B^B$ by

 $P(g)(b) = g(a_0, b)$ for $g \in B^{A \times B}$ and $b \in B$.

324

Then the map P is a fibration and a homomorphism of monoids. Furthermore, if we define the map $s: B^B \rightarrow B^{A \times B}$ by

s(f)(a, b) = f(b) for $f \in B^B$ and $(a, b) \in A \times B$, then the map s is a cross section of P. Therefore we have

Proposition 2. The sequence

 $1 \longrightarrow \operatorname{Inv} (\pi_0(P^{-1}(\operatorname{id}_B), \operatorname{pr}_B)) \xrightarrow{i_*} \operatorname{Inv} (\pi_0(B^{A \times B}, \operatorname{pr}_B)) \xrightarrow{P_*} G(B) \longrightarrow 1$ is split exact.

Here we recall the following

Lemma 4. If B is simply connected, then

$$\pi_0(P^{-1}(\mathrm{id}_B), \mathrm{pr}_B) \simeq [A, a_0; B^B, \mathrm{id}_B].$$

Secondly we define the maps

$$c_1: G(A) \longrightarrow G(A \times B), \\ c_2: G(B) \longrightarrow G(A \times B),$$

and

No. 7]

$$c_3: G(A \times B) \longrightarrow G(B)$$

as follows:

 $\begin{array}{ll} c_1(f)(a,b) = (f(a),b) & \text{ for } f \in G(A) \text{ and } (a,b) \in A \times B, \\ c_2(g)(a,b) = (a,g(b)) & \text{ for } g \in G(B) \text{ and } (a,b) \in A \times B, \end{array}$

and

$$c_{\mathfrak{s}}(h)(b) = \operatorname{pr}_{B}(h(a_{0}, b))$$
 for $h \in G(A \times B)$ and $b \in B$

Then to prove Theorem, it suffices to show the following lemma, which is obtained by straight-forward calculations.

Lemma 5. (a) $\operatorname{res}_* \circ c_1 = \operatorname{id}_{G(A)}$.

- (b) $c_3 \circ c_2 = \mathrm{id}_{G(B)}$.
- (c) $c_{3} \circ i_{*} = P_{*}$.
- (d) The maps c_1 and c_2 are homomorphisms.
- (e) The map c_3 is a homomorphism if $[B, A] = \{0\}$.

References

- M. Arkowitz and C. R. Curjel: The groups of homotopy equivalences of a space. Bull. Amer. Math. Soc., 70, 293-296 (1964).
- [2] S. Sasao and Y. Ando: On the group $\epsilon(K(\pi, 1) \times X)$ for 1-connected CW-complexes X. Kodai Math. J., 5, 65-70 (1982).
- [3] N. Sawashita: On the group of self-equivalences of the product of spheres. Hiroshima Math. J., 5, 69-86 (1975).
- [4] A. J. Sieradski: Twisted self-homotopy equivalences. Pacific J. Math., 34, 789-802 (1970).