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(Communicated by Shokichi IYANAGA, M. d. A., May 12, 1982)

1. Statement of the main result. Let p be fixed prime dif-
ferent rom 2, and ,,e, be integers which are prime to p. We
denote the diagonal matrix of degree m with diagonal elements
cry, c, , c by

Let S= (1}_[_ (1}_[_... _]_ (1}_1 @} be a diagonal matrix o degree
m_> 4, and put

where r, s are non negative integers such that r <_ s.
Let q=p be sufficiently large power of p and M,(Z) be the set

of mX2 rational integral matrices, then the quantity A(S, T) is de-
fined to be the number of the solutions X in M,2(Z), which are
different mod q one from nother, of the mtrix equation
( 1 ) tXSX=_T (mod q),
where X is the transposed of X. There is a formula which expresses
A(S, T) as kind of exponential sum, so called generalized Gaussian
sum. (For details the reader is referred to [1] or [8].) Let <x} be
a function of a reM variable x defined by

oa<x} exp (2rix / q).
Let B=(b) be the binary symmetric square matrix with coefficients
in Z, and C be an element of M,.(Z). By B(q) we understand that
the quantities b, 2b and b run independently modulo q and by
C (mod q) we understand that the coefficients of C run independently
modulo q. Then the formula mentioned above reads
( 2 ) q3Aq(S, T)= Yq, a<tr {(tCSC-T)B}},

B(q)
C (,nod q)

where tr is the trce of the matrix. Let G be the ordinary Gaussin
sum G=Y,=oa exp (2=ix/p) nd (./p) be the Legendre’s symbol, then
our main results re given by the two theorems.

Theorem 1. Let the notations be as above. If q=p, a>__s+ l,
m--1 (mod 2) and m>__5, then Aq(S, T) are given by

A(S, T) q2 3(1--p-) ,._/
=0

9(4-rn)qt-
9

(s+r)(-)/9. =0 9(m

if sr and s----r--1 (mod2),
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t _______13_)
(r-l)/2

if s

_
r+ l and s--0, r=l (mod2),

__q-(l_p-) p<-)_Fp2+-<+.)/’.
kp=0 =0

( [ ][(s-1)/2k p / k=O k =0

if s>=r+l and s--l, r=__O (mod2),

0(3- m)P

(r-2)/2

=q-(1--c)(1--ap’) (l+ap2) ]
p=O

_p3r+3-(r+l)m p (m-2)/a

L=O =0

L p=O p=o

if sr and sr--O (rood2),
where in the above formulas we should understand that the sum
vanishes if the upper bound of the summation is negative. For ex-
.ample,

(s 2)/2

p(-)=0 i/s-r-2<O.

Theorem 2. We put a=(e/p)Gp and fl=(-e/p). If q=p,
.as+l, m=O (mod 2) and m4, then Aq(S, T) are given by
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2=0 L =0

=0 L =0

L ,=0 p=O

if sr+ l and s:l, rO (mod2),
(r-2)/

=q-3(1--a)(l+aflp) (1--aflp)(l+ap)
p=O

=0 k 0

=0 =0 =0

i r d r=0 (mod2),
where i the bove ormla the mihe i the per bod o
the mmtio i etive.

z. Applications. heorem 1 can be alied to derive exliei
formulas for the Pourier eoeeients A(T) of Siegel-Nisensein series
of degree 8 and of weigh ( is even) for he ernary primitive T.
With he ids of he resen work we are rearing a able of hose
values A(T)in he range where 2de (2T)100 and2([]).
heorem 2 will serve to give exliei formulas for Nisensein series of

degree 2 and of even weigh for he general binary T. Concerning
his, there is a table by Nesnikoff and Saldan [g] which gives mainly
the values of A(T), he ourier eoeeients of Nisensein series of
degree 2 and of weight 4, for many rimiive T’s and for a few im-
rimiive T’s. Nor he further arithmetical investigations of Siegel
modular forms of degree 2, i would be desirable o enlarge he above
table of Nesnikoff and Saldan. heorem 2 is useful for his urose.
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