59. On the Killing Radical of Lie Triple Algebras

By Michihiko KIKKAWA

Department of Mathematics, Faculty of Science, Shimane University (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1982)

Introduction. It is known that the radical of a finite dimensional Lie algebra \mathfrak{A} over a field of characteristic zero is the orthogonal complement of the derived algebra $\mathfrak{A}^{(1)} = [\mathfrak{A}, \mathfrak{A}]$ with respect to the Killing form α of \mathfrak{A} (e.g. [1, § 5], [2, Ch. III–5]). As T. S. Ravisankar has pointed out in [12] and [13], O. Loos has shown, in the course of the proof of Satz 3 in [11], an analogous result for the radical (cf. [10]) \mathfrak{A} of a Lie triple system \mathfrak{A} , that is, $\mathfrak{A} = \{X \in \mathfrak{A} \mid \beta(X, \mathfrak{A}^{(1)}) = 0\}$, where β is the Killing form of \mathfrak{A} and $\mathfrak{A}^{(1)} = [\mathfrak{A}, \mathfrak{A}, \mathfrak{A}]$.

The purpose of this paper is to investigate solvability and semi-simplicity of Lie triple algebras by introducing the concept of Killing radical (briefly K-radical) of a Lie triple algebra $\mathfrak g$ in an analogous way as the characterizations of radicals of Lie algebras and Lie triple systems mentioned above. Under a condition on $\mathfrak g$ we show that $\mathfrak g$ is K-solvable (resp. K-semisimple) if and only if its standard enveloping Lie algebra $\mathfrak A=\mathfrak g\oplus D(\mathfrak g,\mathfrak g)$ is a solvable (resp. semisimple) Lie algebra (Theorem 1).

1. Let g be a finite dimensional Lie triple algebra (general Lie triple system in [15]) over a field of characteristic 0. Here, Lie triple algebra g is an anti-commutative algebra with a trilinear operation $g \times g \times g \rightarrow g$ denoted by D(X, Y)Z for $X, Y, Z \in g$ satisfying the following conditions: (i) D(X, X)Z = 0, (ii) $\mathfrak{S}\{(XY)Z + D(X, Y)Z\} = 0$, (iii) $\mathfrak{S}D(XY,Z)W=0$, (iv) D(X,Y)(ZW)=(D(X,Y)Z)W+Z(D(X,Y)W) and (v) [D(X, Y), D(Z, W)] = D(D(X, Y)Z, W) + D(Z, D(X, Y)W), where $X, Y, Z, W \in \mathfrak{g}$ and \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z. It should be noted that a Lie triple algebra g is reduced to Lie algebra as an anti-commutative algebra if the trilinear multiplication D(X,Y)Z vanishes identically, and that g is reduced to Lie triple system under the ternary multiplication [X, Y, Z] = D(X, Y)Z if it is a trivial algebra, i.e., XY = 0 for $X, Y \in \mathfrak{g}$. The standard enveloping Lie algebra of g is the Lie algebra $\mathfrak{A} = \mathfrak{g} \oplus D(\mathfrak{g}, \mathfrak{g})$ under the bracket operation [X, Y] = XY + D(X, Y), [U, X] = -[X, U] = U(X), [U, V] = UV - VUfor $X, Y \in \mathfrak{g}$ and $U, V \in D(\mathfrak{g}, \mathfrak{g})$, where $D(\mathfrak{g}, \mathfrak{g})$ is the Lie algebra of all inner derivations $D(X, Y) \in \text{End }(\mathfrak{g})$ for $X, Y \in \mathfrak{g}$. A subspace \mathfrak{h} of \mathfrak{g} is an ideal of g if $\mathfrak{gh} \subset \mathfrak{h}$ and $D(\mathfrak{g}, \mathfrak{h})\mathfrak{g} \subset \mathfrak{h}$ hold. If \mathfrak{h} is an ideal of g then $\mathfrak{B} = \mathfrak{h} \oplus D(\mathfrak{g}, \mathfrak{h})$ is an ideal of the Lie algebra $\mathfrak{A} = \mathfrak{g} \oplus D(\mathfrak{g}, \mathfrak{g})$. \mathfrak{g} is simple

if it has no nonzero proper ideal.

Let α denote the Killing form of the standard enveloping Lie algebra $\mathfrak{A} = \mathfrak{g} \oplus D(\mathfrak{g}, \mathfrak{g})$ of \mathfrak{g} . We have introduced in [8] the concept of Killing-Ricci form β of \mathfrak{g} as $\beta(X, Y) = \alpha(X, Y)$ for $X, Y \in \mathfrak{g}$, and shown that β is an invariant form on \mathfrak{g} if the trilinear form

(1.1) $\gamma(X, Y, Z) = \text{tr. } D(X, Y)L(Z), \qquad X, Y, Z \in \mathfrak{g},$

vanishes identically, where L(Z) denotes the left multiplication by Z. The form γ can be written as

(1.2)
$$\gamma(X, Y, Z) = \alpha(D(X, Y), Z).$$

If g is reduced to Lie algebra, then β is the Killing form of the Lie algebra g. On the other hand, if g is reduced to Lie triple system, then β is the Killing form of the Lie triple system in the sense of T.S. Ravisankar [13].

The following results have been shown in [8, Theorems 1, 2]:

Proposition 1. Suppose that the trilinear form γ of g vanishes identically. Then;

- (1) The Killing-Ricci form β of \mathfrak{g} is nondegenerate if and only if the standard enveloping Lie algebra \mathfrak{A} is a semisimple Lie algebra.
- (2) If β is nondegenerate, then g is decomposed into a direct sum of mutually orthogonal simple ideals g_i 's with respect to β as

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r; \beta = \beta_1 + \cdots + \beta_r,$$

where each β_i is the Killing-Ricci form of \mathfrak{g}_i .

- Remark 1. The result (2) in the above proposition is reduced to one of $\S 10$ in [14] if $\mathfrak g$ is reduced to Lie triple system.
- Remark 2. By using the direct sum decomposition (1.3) of Lie triple algebra we have obtained in [9] the decomposition of homogeneous systems (cf. [5], [6]) and of homogeneous Lie loops (cf. [3], [4]).
- 2. In the rest of this paper, we assume that the trilinear form γ given by (1.1) vanishes identically. Denote by $\mathfrak{g}^{(1)} = \mathfrak{g}\mathfrak{g} + D(\mathfrak{g},\mathfrak{g})\mathfrak{g}$ the ideal of \mathfrak{g} generated by $\mathfrak{g}\mathfrak{g}$ and $D(\mathfrak{g},\mathfrak{g})\mathfrak{g}$. By the *Killing radical* (*K-radical*) of \mathfrak{g} we mean the ideal $\mathfrak{r}_K = \{X \in \mathfrak{g} | \beta(X,\mathfrak{g}^{(1)}) = 0\}$. As mentioned in the introduction, the *K*-radical of \mathfrak{g} is reduced to the radical of the Lie algebra (resp. Lie triple system) if \mathfrak{g} is reduced to Lie algebra (resp. Lie triple system). The Lie triple algebra \mathfrak{g} is *K-solvable* if $\mathfrak{r}_K = \mathfrak{g}$, and \mathfrak{g} is *K-semisimple* if $\mathfrak{r}_K = \{0\}$. An ideal \mathfrak{h} of \mathfrak{g} is *K-solvable in* \mathfrak{g} if $\mathfrak{g}(\mathfrak{h},\mathfrak{g}^{(1)}) = 0$.

By using $\gamma = 0$ and (1.2) we have;

Proposition 2. An ideal \mathfrak{h} of \mathfrak{g} is K-solvable in \mathfrak{g} if and only if the ideal $\mathfrak{B} = \mathfrak{h} \oplus D(\mathfrak{g}, \mathfrak{h})$ of the Lie algebra $\mathfrak{A} = \mathfrak{g} \oplus D(\mathfrak{g}, \mathfrak{g})$ is solvable.

Now, we have the following:

Theorem 1. Let g be a finite dimensional Lie triple algebra over a field of characteristic zero, and assume that the trilinear form γ

given by (1.1) vanishes. Then;

- (1) g is K-solvable if and only if its standard enveloping Lie algebra $\mathfrak{A} = \mathfrak{g} \oplus D(\mathfrak{g}, \mathfrak{g})$ is a solvable Lie algebra.
- (2) g is K-semisimple if and only if the Lie algebra ${\mathfrak A}$ is semisimple.

Proof. (1) is an immediate consequence of Proposition 2. In [8, Theorem 1], we have proved that $\mathfrak{g}=\mathfrak{g}^{(1)}$ holds if the Killing-Ricci form β is nondegenerate. Hence, if $\mathfrak A$ is semisimple, then β is nondegenerate by Proposition 1 (1), and we get $\mathfrak{r}_{\kappa}=(\mathfrak{g}^{(1)})^{\perp}=\mathfrak{g}^{\perp}=0$, that is, \mathfrak{g} is K-semisimple. On the other hand, if $\mathfrak A$ is not semisimple, then β is degenerate and $\mathfrak{r}_{\kappa}=(\mathfrak{g}^{(1)})^{\perp}\supset \mathfrak{g}^{\perp}\neq\{0\}$, that is, \mathfrak{g} is not K-semisimple. Thus, (2) is shown.

Theorem 2. Under the same assumptions as in Theorem 1, $\mathfrak g$ is K-semisimple if and only if it is decomposed into the direct sum

 $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$

of simple and K-semisimple ideals g_i 's $(i=1, 2, \dots, r)$ of dimension greater than 1 such that $\beta = \beta_1 + \dots + \beta_r$, where each β_i is the Killing-Ricci form of g_i .

Proof. By (1) of Proposition 1 and (2) of Theorem 1, $\mathfrak g$ is K-semisimple if and only if its Killing-Ricci form β is nondegenerate. Hence, if $\mathfrak g$ is K-semisimple, then the decomposition (2.1) into simple ideals follows from (2) of Proposition 1. In this case, each β_i is nondegenerate Killing-Ricci form of $\mathfrak g_i$, so that $\mathfrak g_i$ is K-semisimple and dim $\mathfrak g_i>1$. Conversely, suppose that $\mathfrak g$ is decomposed into (2.1) with simple and K-semisimple ideals $\mathfrak g_i$. Then, β is nondegenerate since $X=X_1+\cdots+X_r, X_i\in\mathfrak g_i$, satisfies $\beta(X,\mathfrak g)=0$ if and only if $\beta_i(X_i,g_i)=0$, $i=1,2,\cdots,r$, and since $\mathfrak g_i$ is K-semisimple.

3. In our paper [7], we have treated a kind of solvability of Lie triple algebras given as follows: For any ideal $\mathfrak h$ of $\mathfrak g$, set $\mathfrak h^{(0)}=\mathfrak h$, $\mathfrak h^{(1)}=\mathfrak h+D(\mathfrak g,\mathfrak h)\mathfrak h$ and $\mathfrak h^{(i+1)}=\mathfrak h^{(i)}\mathfrak h^{(i)}+D(\mathfrak h,\mathfrak h)\mathfrak h^{(i)}+D(\mathfrak g,\mathfrak h^{(i)})\mathfrak h^{(i)}$ for $i\ge 1$. Then, in the chain $\mathfrak h=\mathfrak h^{(0)}\supset\mathfrak h^{(1)}\supset\cdots\supset\mathfrak h^{(i)}\supset\mathfrak h^{(i+1)}\supset\cdots$ of Lie triple subalgebras of $\mathfrak g$, each $\mathfrak h^{(i+1)}$ is an ideal of $\mathfrak h^{(i)}$ and $\mathfrak h^{(i)}/\mathfrak h^{(i+1)}$ is abelian (cf. [7, Proposition 1]). An ideal $\mathfrak h$ is solvable in $\mathfrak g$ if $\mathfrak h^{(i)}=\{0\}$ for some i. The radical of $\mathfrak g$ is the maximal solvable ideal in $\mathfrak g$. $\mathfrak g$ is semisimple if the radical of $\mathfrak g$ is zero.

Proposition 2 and Theorem 1 combined with Proposition 2, Theorems 1 and 3 in [7] imply the following;

Theorem 3. Assume that the trilinear form γ of g vanishes. Then; (1) If an ideal h is solvable in g, then it is K-solvable in g.

- (2) If g is solvable Lie triple algebra, then it is K-solvable.
- (3) If g is K-semisimple, then it is semisimple.

Remark 3. It is not known whether K-solvability coincides with solvability in [7] or not.

References

- [1] N. Bourbaki: Éléments de Mathématique. Groupes et Algèbres de Lie. Ch. 1, Algèbre de Lie, Hermann (1960).
- [2] N. Jacobson: Lie Algebras. Interscience (1962).
- [3] M. Kikkawa: Geometry of homogeneous Lie loops. Hiroshima Math. J., 5, 141-179 (1975).
- [4] —: A note on subloops of a homogeneous Lie loop and subsystems of its tangent Lie triple algebra. ibid., 5, 439-446 (1975).
- [5] —: Triple systems on manifolds (homogeneous systems). Kokyuroku RIMS, Kyoto Univ., no. 308, 12-21 (1977).
- [6] —: On homogeneous systems II; III. Mem. Fac. Sci. Shimane Univ., 12, 5-13 (1978); 14, 41-46 (1980).
- [7] —: Remarks on solvability of Lie triple algebras. ibid., 13, 17-22 (1979).
- [8] —: On Killing-Ricci forms of Lie triple algebras. Pacific J. Math., 96, 153-161 (1981).
- [9] —: On the decomposition of homogeneous systems with nondegenerate Killing-Ricci tensor. Hiroshima Math. J., 11, 525-531 (1981).
- [10] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
- [11] O. Loos: Über eine Beziehung zwischen Malcev-Algebren und Lie-Trippelsystemen. Pacific J. Math., 18, 553-562 (1966).
- [12] T. S. Ravisankar: On Malcev algebras. ibid., 42, 227-234 (1972).
- [13] —: Some remarks on Lie triple systems. Kumamoto J. Sci. (Math.), 11, 1-8 (1974).
- [14] J. A. Wolf: On the geometry and classification of absolute parallelisms II. J. Diff. Geom., 7, 19-44 (1972).
- [15] K. Yamaguti: On the Lie triple systems and its generalization. J. Sci. Hiroshima Univ., Ser. A, 21, 155-160 (1957/1958).
- [16] —: On the theory of Malcev algebras. Kumamoto J. Sci., Ser. A, 6, 9-45 (1963).