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Introduction. Itis known that the radical of a finite dimensional
Lie algebra 2 over a field of characteristic zero is the orthogonal com-
plement of the derived algebra A® =[A, A] with respect to the Killing
form « of A (e.g. [1, §5], [2, Ch. III-5]). As T.S. Ravisankar has
pointed out in [12] and [13], O. Loos has shown, in the course of the
proof of Satz 3 in [11], an analogous result for the radical (cf. [10])
t of a Lie triple system g, that is, t={X eg|p(X, g®)=0}, where 3 is
the Killing form of g and g®=Ig, g, gl.

The purpose of this paper is to investigate solvability and semi-
simplicity of Lie triple algebras by introducing the concept of Killing
radical (briefly K-radical) of a Lie triple algebra g in an analogous
way as the characterizations of radicals of Lie algebras and Lie triple
systems mentioned above. TUnder a condition on g we show that g is
K-solvable (resp. K-semisimple) if and only if its standard enveloping
Lie algebra A=g®D(g, g) is a solvable (resp. semisimple) Lie algebra
(Theorem 1).

1. Let g be a finite dimensional Lie triple algebra (general Lie
triple system in [15]) over a field of characteristic 0. Here, Lie triple
algebra g is an anti-commutative algebra with a trilinear operation
gXgXg—g denoted by D(X,Y)Z for X,Y,Z ¢ g satisfying the follow-
ing conditions: (i) D(X,X)Z=0, (ii) S{(XY)Z+D(X,Y)Z}=0, (ii)
&D(XY,Z)W =0, (iv) DX, Y)ZW)=DX, Y)Z2)W+Z (DX, Y)W) and
W IDX,Y),DZ, WI=DDX,Y)Z, W)+ D(Z, DX, Y)W), where
X,Y,Z, W eg and G denotes the cyclic sum with respect to X, Y and
Z. Tt should be noted that a Lie triple algebra g is reduced to Lie
algebra as an anti-commutative algebra if the trilinear multiplication
DX, Y)Z vanishes identically, and that g is reduced to Lie triple
gystem under the ternary multiplication [X,Y,Z]=D(X,Y)Z if itis a
trivial algebra, i.e., XY =0 for X, Y eg. The standard enveloping Lie
algebra of g is the Lie algebra A=g®D(g, g) under the bracket opera-
tion [X,Y]=XY+DX,Y), [U,X]=—[X,Ul=UX), [U,V]=UV-VU
for X,Y egand U, V € D(g, g), where D(g, g) is the Lie algebra of all
inner derivations D(X,Y) ¢ End (g) for X,Y eg. A subspace §j of g is
an ideal of g if ghh and D(g, §H)gch hold. If § is an ideal of g then
B=H®D(g, §) is an ideal of the Lie algebra A=gPD(g,g). g is simple
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if it has no nonzero proper ideal.

Let « denote the Killing form of the standard enveloping Lie
algebra A=g®D(g, g) of g. We have introduced in [8] the concept of
Killing-Ricei form B of g as f(X,Y)=a(X,Y) for X, Y eg, and shown
that 8 is an invariant form on g if the trilinear form
1.1 1X, Y, Z2)=tr. DX, Y)L(2), X,Y,Zeg,
vanishes identically, where L(Z) denotes the left multiplication by Z.
The form y can be written as
(]-'2) T(X’ Y’ Z)=0l(D(X, Y)’ Z)~
If g is reduced to Lie algebra, then 8 is the Killing form of the Lie
algebra g. On the other hand, if g is reduced to Lie triple system,
then g is the Killing form of the Lie triple system in the sense of T.S.
Ravisankar [13].

The following results have been shown in [8, Theorems 1, 2]:

Proposition 1. Suppose that the trilinear form y of g vanishes
identically. Then;

(1) The Killing-Ricci form B of g is nondegenerate if and only if
the standard enveloping Lie algebra U is a semisimple Lie algebra.

@) If B is nondegenerate, then g is decomposed into a direct sum
of mutually orthogonal simple ideals g,’s with respect to B as
1.8) g=0:®D---Dg,; f=f+---+8,
where each B, is the Killing-Ricci form of g,.

Remark 1. The result (2) in the above proposition is reduced to
one of §10 in [14] if g is reduced to Lie triple system.

Remark 2. By using the direct sum decomposition (1.3) of Lie
triple algebra we have obtained in [9] the decomposition of homogene-
ous systems (cf. [5], [6]) and of homogeneous Lie loops (cf. [3], [4]).

2. In the rest of this paper, we assume that the trilinear form
v given by (1.1) vanishes identically. Denote by g® =gga-+D(g, g)g the
ideal of g generated by gg and D(g,g)g. By the Killing radical (K-
radical) of g we mean the ideal t,={X e g|f(X, g")=0}. As mentioned
in the introduction, the K-radical of g is reduced to the radical of the
Lie algebra (resp. Lie triple system) if g is reduced to Lie algebra
(resp. Lie triple system). The Lie triple algebra g is K-solvable if
tx=g, and g is K-semisimple if 1,={0}. An ideal }) of g is K-solvable
i g if B, g©)=0.

By using y=0 and (1.2) we have;

Proposition 2. An ideal § of g is K-solvable in g if and only if the
ideal B=HDD(g, ) of the Lie algebra A=gPDD(g, g) is solvable.

Now, we have the following;

Theorem 1. Let g be a finite dimensional Lie triple algebra over
o field of characteristic zero, and asswme that the trilinear form y
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given by (1.1) vanishes. Then;

@) g is K-solvable if and only if its standard enveloping Lie
algebra A=gPD(g, ¢) is a solvable Lie algebra.

@) g is K-semisimple if and only if the Lie algebra U is semi-
simple.

Proof. (1) is an immediate consequence of Proposition2. In [8,
Theorem 1], we have proved that g=g® holds if the Killing-Ricci form
B is nondegenerate. Hence, if % is semisimple, then § is nondegenerate
by Proposition 1 (1), and we get t,=(@")L =g+ =0, that is, g is K-semi-
simple. On the other hand, if % is not semisimple, then g is degenerate
and r,=(g")+Dgt+~{0}, that is, g is not K-semisimple. Thus, (2) is
shown.

Theorem 2. Under the same assumptions as in Theorem 1, g is
K-semisimple if and only if it is decomposed into the direct sum
2.1) g=0:®- - - DPg,
of simple and K-semisimple ideals g,/’s (i=1,2,--.,7) of dimension
greater than 1 such that B=p,+ - - - +p,, where each B, is the Killing-
Ricei form of g,.

Proof. By (1) of Proposition 1 and (2) of Theorem 1, g is K-semi-
simple if and only if its Killing-Ricci form g is nondegenerate. Hence,
if g is K-semisimple, then the decomposition (2.1) into simple ideals
follows from (2) of Proposition 1. In this case, each §, is nondegen-
erate Killing-Ricci form of g,, so that g, is K-semisimple and dim g,>1.
Conversely, suppose that g is decomposed into (2.1) with simple and K-
semisimple ideals g,. Then, 8 is nondegenerate since X=X+ .-
+X,, X, e g, satisfies p(X, g) =0if and only if 8(X,, 9)=0,¢=1,2,---, 7,
and since g, is K-semisimple.

3. In our paper [7], we have treated a kind of solvability of Lie
triple algebras given as follows: For any ideal § of g, set H@ =p, j®
=bhh+D(g, h)h and h¢* ¥ =h®H® 4+ D(h, ) +D(g, H)h® for i=1. Then,
in jthe chain H=HODH® D...DH® DH¢*v D... of Lie triple sub-
algebras of g, each H“*" is an ideal of H® and H®/H“*? is abelian (cf.
[7, Proposition 1]). An ideal § is solvable in g if §® ={0} for some 1.
The radical of g is the maximal solvable ideal in g. ¢ is semisimple
if the radical of g is zero.

Proposition 2 and Theorem 1 combined with Proposition 2, Theo-
rems 1 and 3 in [7] imply the following ;

Theorem 3. Assume that the trilinear form y of g vanishes.
Then; (1) If an ideal ¥ is solvable in g, then it is K-solvable in g.

(@) If g is solvable Lie triple algebra, then it is K-solvable.

B If g is K-semisimple, then it is semisimple.

Remark 3. It is not known whether K-solvability coincides with
solvability in [7] or not.
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