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Introduction. Let M and M* be product Riemannian manifolds
of dimension 7#>8, and denote the structures by (M,g,F) and
M*, g*, @) respectively. The product structures F' of M and G of M*
are different from the identity tensor I and satisfy the relations

=1, G*=I,
9(FX, FX)=g(X, X), g¥(GX*, GX*)=g*(X*, X*)
for any vector X of M and any vector X* of M*. The integrability
conditions of F and G in M and M* are
VyF=0, V*wG=0,

where we have denoted by F and I'* covariant differentiations with
respect to g and g* respectively. A conformal diffeomorphism f of
M to M* is characterized by the change

0.1) g*=p""g

of the metric tensors, where p is a positive valued scalar field.

Under a diffeomorphism f of M to M*, the image of a quantity
on M* by the induced map f* of f will be denoted by the same char-
acter as the original. The structures F' and G are said to be commuta-
tive with one another at a point P of M under f if FG=GF at P. In
a previous paper [2], one of the present authors has proved the follow-
ing

Theorem A. If both product Riemannion manifolds M and M*
are complete, then there is no global non-homothetic conformal diffeo-
morphism of M to M* such that the product structures F and G are
not commutative under it at a point of M.

Ag the contraposition of Theorem A, we can state

Theorem B. Let both product Riemannion monifolds M and M*
be complete. If there exists a global non-homothetic conformal diff eo-
morphism f of M onto M*, then the diffeomorphism f has to make
the product structures F and G commutative everywhere in M.

By virtue of Theorem B, we shall investigate product Riemannian
manifolds admitting a global non-homothetic conformal diffeomorph-
ism. The purpose of the present paper is to prove the following

Theorem. Let both M and M* be complete, connected and simply
connected product Riemannian manifolds of dimension n>3. If there
18 a global non-homothetic conformal diffeomorphism f of M onto M*,
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then the underlying manifold of M and M* is the product N;X N, X N,
of three complete Riemannian manifolds N,, N, and N, and the as-
soctated scalar field p with f depends on one part, say N, only. If
the metric forms of N,, N, and N, are denoted by ds?, ds: and ds?
respectively, then

1) M is the product M, X N,, where M, is an irreducible complete
Riemannian manifold, and the metric form of M is written as
0.2) dsi+dsi-+ds}
on the underlying manifold N, X N,X N,, and

(2) M* is the product N, x M¥, where M¥ is an irreducible com~
plete Riemannian manifold, and the metric form of M* is written as
0.3 dsi+p~*(dsj+ds)
on the same underlying manifold N, X N, X N,.

1. Preliminaries. Throughout the present paper, we assume
that the differentiability of manifolds, diffeomorphisms and quantities
is of class C=. Greek indices run on the range 1 to n. Let M be the
product M, x M, of two Riemannian manifolds M, and M, of dimension
n, and n, respectively, n,+n,=n. The manifolds M, and M, are called
parts of M. Let (x*, 2*) be a separate coordinate system of M such
that (z*) and (x*) are local coordinate systems of the parts M, and M,
respectively. Here and hereafter Latin indices run on the ranges:

h,i’j,k; =12, ©y Ny

D78 - = n+1, -, n.
In such a coordinate system of M, the metric tensor g=(g,,) of M has
pure components only, and the product structure F=(F% has pure
components F?=4? and F2= —g2 only. The restrictions of the covari-
ant differentiation V of M on the parts M, and M, are expressed by
V, and 7, respectively. They are commutative with one another.

Under a conformal diffeomorphism f of M to M*, ‘we see that the
induced tensor G from M* to M constitutes an almost product Riman-
nian structure together with the metric g on M but is not necessarily
integrable. The covariant tensor G,, defined by G,,=G%g,; is sym-
metric in 2 and g. The product structures F and G are commutative
under f if and only if G5 and G,, have pure components only with
respect to a separate coordinate system in M.

If the metric g* of M* is conformally related to g of M by (0.1),
then the integrability condition F*G:=0 of G in M* is equivalent to
the differential equation
1.1 V.Gi.=—p"(G,0.+ G 0:— 9,:G00°— 9,.G1.0°)
on M, where we have put p,=V 0 and p*=p,9".

We recall two lemmas in [1] of local versions.

Lemma 1. A conformal diffeomorphism f of M onto M* is
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homothetic if and only if V,G,,=0. Then the structures F and G are
commutative under f. In particular, if f preserves the product
structures, that is, G=+F, then f is homothetic.

Lemma 2. If the structures F and G are commutative under a
non-homothetic conformal diffeomorphism f, then the associated
scalar field p is a function on either of the parts M, or M, only.

We notice that, if the scalar field p is a function of both M, and
M,, then F and G are not commutative under f and hence there is no
global non-homothetic conformal diffeomorphism having p as the as-
sociated scalar field.

Now we shall give Lemma 2 a global version as follows:

Lemma 3. Let both M and M* be product Riemannion manifolds.
If the structures F and G are commutative under a non-homothetic
conformal diffeomorphism f of M onto M*, then the associated scalar
field p is a function on either M, or M, only over the whole manifold M.

Proof. By means of the commutativity of F' and G, the structure
G is pure and the equation (1.1) referred to a separate coordinate
system splits into the following equations:

(1-2) VjGih, =— P—X(G/zpn + Gjn(h - gjithpk - gthucPk) ’
1.3) 7,G,=0;

(1.4 ViGpi=—0"'(Gyipp—9;:Gp0)=0;

(1'5) Vqui=—p—l(qupi—gquihph)——:O;

(1.6) V,Goy=0;

(17) Vqup = p-l(Grqpp + Grppq - grqppsps - grqusps)'

The equations (1.3) and (1.6) mean that G,=(G?) depends on M, only
and G,=(G%) does on M, only.

If there are two points P and @ such that p,(P)=£0 and p,(Q)+0,
then it follows from (1.4) that G, is proportional to I,=(5}) and hence
G,= +1, on the whole manifold M because of G*=I and the independ-
ence of G, on M,. Similarly we have, from (1.5), G,= +1I, on the whole
manifold M, where [,=(3%). Since G is different from I, we have
G=+F on the whole manifold M and hence f is homothetic by
Lemma 1. This contradicts to the non-homothety of f. Therefore
the associated scalar field p should be a function dependent of one part
only. Q.E.D.

2. Proof of Theorem. Since there exists a global non-homothe-
tic conformal diffeomorphism f of M onto M*, it follows from Theo-
rem B that the product structures F' and G are commutative every-
where in M and from Lemma 3 that p may be assumed as a function of
M, only. As seen in the proof of Lemma 3, we have G,= +1,. Choose
G,=I,. Then we have G,,=9¢,, with respect to a separate coordinate
gystem (x*, x?) in M.
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We denote by M,(P) the part M, passing through any point P of
M and by M, the image f(M,(P)) of M,(P) by f. If we denote by ds?
and ds? the metric forms of M, and M, respectively, then the induced
metric form of M, in M* is identical with p-*dsl. The part M, is
simply connected, and so is the image M;. Since M* is complete, the
submanifold M} is also complete.

Since the equation (1.2) leads to the integrability condition F*G,
=0 of G, on M/ and we have chosen G,=1I,, the structure G, on M; can
be written in the form G,=—1I, or

—I 0

@.1 G,_( ! I).

If G,=—1,, then we have G= +F and hence f is homothetic by Lemma
1. Thus G, must be of the form (2.1) on M;. It follows from (2.1)
that M; is a product Riemannian manifold N, x N, of two complete
Riemannian manifolds N, and N,. Since G,,=9,,, the equation (1.5)
implies G*p,=p,. From this equation and (2.1), we easily see that the
associated scalar field p depends on N, only. If we denote by ds! and
ds? the metric forms of N, and N, respectively, then the underlying
manifold of the part M, of M is N,XN, and the metric form ds? is
written as dsi=g*(ds}+ds?). Putting N,=M, and rewriting ds? in place
of p'ds}, we see that the underlying manifold of M is the product N,
X Ny X N, and the metric form is given by (0.2). The metric form of
M* is then expressed as (0.3) on the same underlying manifold N, X N,
X N,.

If M, is reducible and a Riemannian product M} x M: of two Rie-
mannian manifolds M} and M} and the associated scalar field p depends
on both the parts M} and M?, then we consider M as the product M:
X (M3ix M,) of the parts M: and M?x M, in place of M, and M,. Theo-
rem A and the remark following Lemma 2 show that there is no
global non-homothetic conformal diffeomorphism having such p as the
associated scalar field. Hence M, is irreducible. Similarly we see
that M3} with the underlying manifold N,x N, is an irreducible part of
M*.

References

[1] Y. Tashiro: On conformal diffeomorphisms between complete product Rie-
mannian manifolds. J. Math. Soc. Japan, 32, 639-663 (1980).

On conformal diffeomorphisms between product Riemannian mani-

folds. Proc. Japan Acad., 57A, 38-41 (1981).

[2]



