56. Rational Functions of (0, 1)-Type on the Two-Dimensional Complex Projective Space

By Hiroko KASHIWARA

Department of Mathematics, University of Osaka Prefecture

(Communicated by Kunihiko Kodaira, M. J. A., May 12, 1982)

- 1. Let R be a rational function on the two-dimensional complex projective space. Let $\{p_1, \dots, p_r\}$ be the set of indeterminate points of R. If the irreducible components of a generic level curve of R in $P^2 - \{p_1, \dots, p_r\}$ are an open Riemann surface of genus g with n points as its boundary, then R is called (g, n)-type. The purpose of this note is to give the explicit forms of all the rational functions of (0, 1)-type. The details will be published elsewhere. A rational function is called primitive if a generic level curve is irreducible. As any rational function is a composite of a primitive function by a rational function of one variable, we assume hereafter that R is primitive rational function of (0,1)-type. Such a rational function R has only one in-There are determinate point and all the level curves are irreducible. at most two level curves with order larger than one which we shall call singular level curves. Here a level curve $R^{-1}(\alpha)$ $(\alpha \in P^1)$ has order m if $R-\alpha$ or 1/R takes zero with order m. Thus the set \mathcal{F} of primitive functions of (0, 1)-type decomposes into the three parts \mathcal{F}_0 , $\mathcal{F}_{ extsf{I}}$ and $\mathcal{F}_{ extsf{II}}$ according to the number of singular level curves. The set \mathcal{F}_0 consists of linear functions on P^2 . The explicit forms of rational functions in \mathcal{F}_{I} is rather simple because the singular level curve is a line. omit this case in this note.
- 2. Let R be a primitive rational function in \mathcal{F}_{II} . Then we can assume without loss of generality that its divisor has the form

$$(1) (R) = mS_0 - nS_{\infty}$$

where m and n are integers relatively prime and 1 < m < n. We can take a rational function φ on P^2 such that (R, φ) is an isomorphism from $P^2 - (S_0 \cup S_{\infty})$ onto $C^* \times C$. Furthermore, φ takes zero on S_0 of order less than m and has pole on S_{∞} of order less than n. By these conditions φ is uniquely determined up to a constant multiple. This function is of (0, 2)-type and its divisor has the form

$$(2) \qquad \qquad (\varphi) = T + sS_0 - tS_{\infty}$$

where T is an irreducible curve and s and t are integers satisfying $1 \le s < m$, s < t < n and (m, s) = 1. The degrees of the curves S_0 , S_{∞} and T are n, m and mt-ns, respectively. Then, the rational function

 $f = \varphi^m/R^s$ is of (0,2)-type, and f takes a constant value on S_0 . We normalize this value to be -1. In this case we call $[R, \varphi]$ a normalized pair. Then we have

(3)
$$(f+1)=S_0+U-(mt-ns)S_{\infty}$$

for an irreducible curve U.

3. By successive blowing-up's at the indeterminate point of R, we obtain $\rho: M \to P^2$ so that $R \cdot \rho$ has no more indeterminate point. Let Σ be the inverse image of the indeterminate point of R by ρ . Then we can explicitly give the graph of Σ . Here the graph of Σ means the set of dots, which represents the irreducible components of Σ . If two irreducible components intersect, we join the two corresponding dots by the segment. The integer attached to the dot gives the absolute value a of the self-intersection number -a of the corresponding component. In order to explain the possible graph for Σ , we prepare several notations. For a graph G, we mean by G^p the graph $G - G - \cdots - G$. For $l \ge 0$, by \vec{G}_l we denote the graph

$$\left(\begin{array}{c} \bigcirc \\ 7 \end{array} \right)^{j-1} \bigcirc \left(\begin{array}{c} \bigcirc \\ 2 \end{array} \bigcirc \left(\begin{array}{c} \bigcirc \\ 3 \end{array} \right)^{j-1} \right)^{j-1} \right)$$
 and

We understand \vec{G}_{-1} by the empty graph. By \vec{H}_l $(l \ge 1)$, we denote the graph deleted five \circ in the right end from \vec{G}_l . By $^+\vec{G}_l$ (resp. \vec{G}_l^+)

 $(l \ge 0)$, we denote the graph obtained from \vec{G}_l by increasing the number on the extremely left (resp. right) by one. ${}^+\vec{H}_l$ is obtained from \vec{H}_l by increasing the number of the extreme left by one and ${}^+\vec{H}^-$ is obtained from ${}^+\vec{H}_l$ by decreasing the extreme right number by one. The graphs \vec{G}_l , \vec{H}_l , etc. are the graphs obtained by reversing direction.

Theorem 1. All possible graphs for Σ are listed as follows. II(l) $(l \ge 0)$: $\vec{G}_l \longrightarrow \vec{G}_{l+1}$.

when N is an odd integer $(N \ge 1)$

$$\vec{G}_{l} - \underbrace{\vec{G}_{l}}_{1} - \vec{H}_{l+1}^{+} - \underbrace{\vec{G}_{l}}_{\lambda_{N}} + \vec{H}_{l+1}^{+} - \underbrace{\vec{G}_{l}}_{\lambda_{N-1}} + \vec{H}_{l+1}^{+} \cdots + \vec{H}_{l+1}^{+} - \underbrace{\vec{G}_{l}}_{\lambda_{2}} + \vec{H}_{l+1}^{+} - \underbrace{\vec{G}_{l}}_{\lambda_{1}} + \vec{G}_{l+1}.$$

II⁻ $(l, N; \lambda_1, \dots, \lambda_N)$: when N is an odd integer $(N \ge 1)$

$$\vec{G}_{l}$$
 $\stackrel{\frown}{=}$ \vec{G}_{l} $\stackrel{\frown}{=}$ \vec{G}_{l} $\stackrel{\frown}{=}$ \vec{G}_{l} $\stackrel{\frown}{=}$ \vec{G}_{l-1} , \vec{G}_{l-1}

when N is an even integer $(N \ge 2)$

$$\vec{G}_{l} \xrightarrow{\qquad \qquad \qquad } \vec{G}_{l} \xrightarrow{\qquad \qquad } \vec{G}_{l}$$

$$\vec{G}_{l} \xrightarrow{\qquad \qquad } \vec{H}_{l+1} \xrightarrow{\qquad } \vec{H}_{l+1}$$

Here $\lambda_1, \dots, \lambda_N$ are integers such that $\lambda_j \geq 0$ when $N \geq 1$ and $\lambda_j \geq 1$ when N = 0.

For example, $II^+(1,2;2,0)$ means the graph

4. Let $[R,\varphi]$ be a normalized pair belonging to $\mathrm{II}(l)$. Then, m, n,s,t and mt-ns for the $[R,\varphi]$ given by (1), (2) and (3) are respectively $m_l, m_{l+1}, s_l, s_{l+1}$ and 3 defined by $m_l = 3m_{l-1} - m_{l-2}, m_0 = 2, m_1 = 5$ and $s_l = m_l - m_{l-2}$. For $[R,\varphi]$ belonging to $\mathrm{II}^\pm(l,N,\lambda_1,\cdots,\lambda_N), m,n,s,$ and t are respectively $m_l, n_l^\pm(N,\lambda_1,\cdots,\lambda_N), s_l^\pm(N)$ and $t_l^\pm(N,\lambda_1,\cdots,\lambda_N)$ given as follows; $s_l^\pm(N) = s_l$ for an even $N, = m_{l-2}$ for an odd $N, s_l^\pm(N) = s_l^\pm(N-1), n_l^\pm(N,\lambda_1,\cdots,\lambda_N) = m_{l+1} \prod_{l=1}^N (\lambda_l m_l^2 + m_l s_l^\pm(l) - 1)$ and $t_l^\pm(N,\lambda_1,\cdots,\lambda_N) = (\lambda_N m_l s_l^\pm(N) + (s_l^\pm(N))^2 + \lambda_N) n_l^\pm(N-1,\lambda_1,\cdots,\lambda_{N-1}),$ where $n_l^\pm(0) = m_{l+1}$.

Theorem 2. We define the rational functions R_{l} and φ_{l} by $R_{l} = (\varphi_{l-1}^{m_{l}} + R_{l-1}^{s_{l}})^{m_{l}}/(R_{l-1})^{-1+s_{l}m_{l}}, \ \varphi_{l} = \varphi_{l-1}(\varphi_{l-1}^{m_{l}} + R_{l-1}^{s_{l}})^{s_{l}}/(R_{l-1})^{(s_{l})^{2}}$ for $l \ge 1$ and

$$R_0 = \{(y - x^2)^2 - 2xy^2(y - x^2) + y^5\}^2 / (y - x^2)^5$$

$$\varphi_0 = (xy - x^3 - y^3)\{(y - x^2)^2 - 2xy^2(y - x^2) + y^5\} / (y - x^2)^4$$

for an inhomogeneous coordinates (x, y) of P^2 . Then (R_i, φ_i) is a normalized pair in $\mathrm{II}(l)$. Conversely, any $[R, \varphi]$ in $\mathrm{II}(l)$ has the form $[c^{m_i}R_i, c^{s_i}\varphi_i]$ for some $c \in \mathbb{C}^*$ and some inhomogeneous coordinates (x, y) of P^2 .

In this case, S_{∞} , U and T for $[R_{t}, \varphi_{t}]$ given by (1), (2) and (3) concide with S_{0} , S_{∞} and T for $[R_{t-1}, \varphi_{t-1}]$ respectively.

Theorem 3. If (R, φ) is a normalized pair belonging to $\operatorname{II}^{\pm}(l, N; \lambda_1, \dots, \lambda_N)$, then there exist unique $a_j \in C$ $(j=1, \dots, \lambda_N)$,

 $a_{1+\lambda_N} \in C^*$ and a normalized pair $[R', \varphi']$ belong to $II^{\pm}(l, N-1, \lambda_1, \ldots, \lambda_{N-1})$ such that

$$R = P^{m_l}/(R')^{1+m_l s_l^{\pm}(N-1)}, \qquad \varphi = (\xi P^{s_l^{\pm}(N)})/(R')^{1+m_{l-2}s_l}$$

where $\xi = \varphi' + \sum_{j=1}^{1+\lambda_N} a_j(R')^j$ and $P = \xi^{m_l} + (R')^{s_l^{\pm}(N-1)}$. Conversely the (R,φ) given in this way is a normalized pair in $II^{\pm}(l,N,\lambda_1,\dots,\lambda_N)$. Here we assume $l \ge 0$, $N \ge 1$ for II^{\pm} and $l \ge 0$, $N \ge 2$ for II^{\pm} .

In this case, U and S_{∞} for $[R, \varphi]$ are S_0 and S_{∞} for $[R', \varphi']$ respectively.

Theorem 4. For
$$a_j \in C$$
 $(j=0, \dots, \lambda-1)$ and $a_k \in C^*$, we set

$$R = P^{m_l}/(R_{l-1})^{-1+m_l s_l}, \qquad \varphi = (\xi P^{s_l})/(R_{l-1})^{(s_l)^2}$$

when $\xi = \varphi_{l-1} + \sum_{j=0}^{\lambda} a_j R_{l-1}^{-j}$ and $P = \xi^{m_l} + R_{l-1}^{s_l}$. Then (R, φ) is a normalized pair in $\Pi^-(l, 1; \lambda)$. When l = 0, we assume $a_0 = 0$ and we set

$$R_{-1} = y^{-2}(y - x^2)$$
 and $\varphi_{-1} = y^{-1}x$.

Conversely any $[R, \varphi]$ in $II^-(l, 1; \lambda)$ is written in this form up to a constant multiple.

In this case, S_{∞} and U for $[R,\varphi]$ are S_0 and S_{∞} for $[R_{l-1},\varphi_{l-1}]$ respectively.

As corollary to the above results, we can give explicitly the equations defining S_0 , S_{∞} and T by the similar recursion formula.

The author would like to thank M. Kashiwara for his helpful discussions and suggestions.