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1. Let R be a rational function on the two-dimensional complex
projective space. Let {p, ...,p) be the set of indeterminate points
of R. If the irreducible components of a generic level curve of R in
P-{p,, ..., p} are an open Riemann surface of genus g with n points
as its boundary, then R is called (g, n)-type. The purpose of this note
is to give the explicit forms of all the rational functions of (0, 1)-type.
The details will be published elsewhere. A rational function is called
primitive if a generic level curve is irreducible. As any rational
function is a composite of a primitive function by a rational function
of one variable, we assume hereafter that R is primitive rational
function of (0, 1)-type. Such a rational function R has only one in-
determinate point and all the level curves are irreducible. There are
at most two[level curves with order larger than one which we shall cll
singular level curves. Here a level curve R-(a) (a e P) has order m
if R-a or 1/R takes zero with order m. Thus the set of primitive
functions of (0, 1)-type decomposes into the three parts 0, and
according to the number of singular level curves. The set 0 consists
of linear functions on P. The explicit forms of rational functions in

is rather simple because the singular level curve is a line. We
omit this case in this note.

2. Let R be a primitive rational function in . Then we can
assume without loss of generality that its divisor has the form
( l ) (R) mSo-nS
where m and n are integers relatively prime and lm,n. We can
take a rational function on P such that (R, ) is an isomorphism
from P-(So t2 S) onto C* C. Furthermore, ? takes zero on So of
order less than m and has pole on S of order less than n. By these
conditions is uniquely determined up to a constant multiple. This
function is of (0, 2)-type and its divisor has the form

( 2 ) () T+sSo-tS
where T is an irreducible curve and s and t are integers satisfying
I gs m, s tq and (m, s) 1. The degrees of the curves So, S and T
are n, m and mt-ns, respectively. Then, the rational function
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f=/R is of (0, 2)-type, and f takes a constant value on So. We
normalize this value to be -1. In this case we call [R, ] a normalized
pair. Then we have
( 3 ) (f+ 1) S0+ U-(mt-ns)S
for an irreducible curve U.

3. By successive blowing-up’s at the indeterminate point of R,
we obtain p:M--.P so that R.p has no more indeterminate point.
Let 2: be the inverse image of the indeterminate point of R by p.
Then we can explicitely give the graph of 2:. Here the graph of
means the set of dots, which represents the irreducible components
of X. If two irreducible components intersect, we join the two cor-
responding dots by the segment. The integer attached to the dot
gives the absolute value a of the self-intersection number -a of the
corresponding component. In order to explain the possible graph for
X, we prepare several notations. For graph G, we mean by G the
graph G-G G. For l0, by t we denote the graph

p-tles

1

and

We understand _, by he empty ffraph. By t (11), we denote
ffraph deleted ve in he riffh end from . By + (resp. )

2
(0), we denote he ffrah obtained from by increasinff he number
on he extremely lef (resp. fifthS) by one. +H is obtained from
by increasinff he number of he extreme lef by one and +- is
obtained from + by decreasinff he extreme riffh number by one.
The ffraphs t, t, ec. are he ffraphs obtained by reversinff direction.

The raph means [-( )-a k 2 / 2 g when

When =0, (bO, e8) means
a 2 a a

Theorem 1. All possible graphs for are listed as follows.

II +(1, N , ..., ) when N is a positive even integer (N2)
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when N is an odd integer (N_>_I)

II-(/, N;R, ..., 2)" when N is an odd integer (NI)

when N is an even integer (N2)

2./’
+1

AV,_I +1
21

-1.

Here 2, ..., R are integers such that 2>=0 when N>=I and R>=l when

Y=0.
For example, II (1, 2 2, 0) means the graph

4 2 2 2 2 2 3 2 2 2 2 2 5

5 2 2 2 2 2 1 7 2 2 3 2 2 8 2 2 2 8 2 2 3 2 2 2 2 2

4. Let [R, ] be a normalized pair belonging to II(/). Then, m,
n, s, t and mt--ns for the [R, ] given by (1), (2) and (3) are respec-
tively m, m/, s, s/ and 3 defined by m=3m_-m_, m0=2, m=5
and s=m-m_. Fr [R, ] belonging to II(/, N, 2, ., 2), m, n, s,
and t are respectively m, n(N, 2, ..., 2), s(N) and t(N, 2, ..., 2)
given as follows; s?(N)=st or an even N, =m_ for an odd N, s?(N)
:s?(N--1), n?(N, 2,, ..., 2):m, H/N=I (2m+mts?(i)--l) and t?(N,

,2)=(2ms(N)+(s(N))+)n?(N-1, 2, ..., 2_), where n?(0)
--mz+ 1.

Theorem 2. We define the rational functions R and by

R=(?-+..,-. I=_(?-"+RL)’/(R-)
for >= l and

xy (y x2) q- / (y x2)Ro--{(y_x2)_2 yS}
xy (y x) q- y} / (yo (xy- x3- y3)((y- x2)-2 x)

for an inhomogeneous coordinates (x, y) of P. Then (Rt,) is a

normalized pair in II(/). Conversely, any [R, ] in II(/) has the form
[cRt, cSt] for some c C* and some inhomogeneous coordinates (x, y)

of p2.

In this case, S, U and T or [Rt, ] given by (1), (2) and (3) con-

cide with So, S and T for [Rt_,, t_] respectively.

Theorem 3. If (R,) is a normalized pair belonging to
II+/-(/,N; 21, .,2), then there exist unique aj e C (]=1, ...,2),
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a+eC* and a normalized pair [R’,’] belong to II+/-(/,N-I,,
", -1) such that

R P/(R’)+’(-) (P())/(R’)’+-
+where $=’+= a(R’) and P=+(R’)(-) Conversely the

(R,) given in this way is a normalized pair in II(/,N, 2, ..., ).
Here we assume lO, NI for II and lO, N2 for II-.

In this case, U and S for [R, ] are S0 and S for [R’, ’] respec-
tively.

Theorem 4. For a e C (]=0, ..., 2-1) and a e C*, we set
R=P/(Rt_)-+, =(P)/(R_)()

when =t_+=0aR_ and P=+R_. Then (R,) is a normal-
ized pair in II-(/, 1 2). When/=0, we assume ao=0 and we set

R_=y-(y-x) and _=y-x.
Conversely any [R,] in II-(/, 1;) is written in this form up to a
constant multiple.

In this case, S and U for [R,] are S0 and S or [R_,t_]
respectively.

As corollary to the above results, we can give explicitly the equa-
tions defining S0, S and T by the similar recursion formula.
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