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1. Let R be a rational function on the two-dimensional complex
projective space. Let {p,, -- -, p,} be the set of indeterminate points
of R. If the irreducible components of a generic level curve of R in
P*—{p,, - - -, p,} are an open Riemann surface of genus g with n points
as its boundary, then R is called (g, »)-type. The purpose of this note
is to give the explicit forms of all the rational functions of (0, 1)-type.
The details will be published elsewhere. A rational function is called
primitive if a generic level curve is irreducible. As any rational
function is a composite of a primitive function by a rational function
of one variable, we assume hereafter that R is primitive rational
function of (0,1)-type. Such a rational function R has only one in-
determinate point and all the level curves are irreducible. There are
at most twolevel curves with order larger than one which we shall call
gingular level curves. Here a level curve R-!(a) (x € P) has order m
if R—a or 1/R takes zero with order m. Thus the set & of primitive
functions of (0, 1)-type decomposes into the three parts &, F; and Jy
according to the number of singular level curves. The set &, consists
of linear functions on P?.. The explicit forms of rational functions in
% is rather simple because the singular level curve is a line. We
omit this case in this note.

2. Let R be a primitive rational function in ;. Then we can
assume without loss of generality that its divisor has the form
(1) (R)=mS,—nS..
where m and n are integers relatively prime and 1<m<n. We can
take a rational function ¢ on P? such that (R, ¢) is an isomorphism
from P*—(S,US.) onto C*XC. Furthermore, ¢ takes zero on S, of
order less than m and has pole on S., of order less than n. By these
conditions ¢ is uniquely determined up to a constant multiple. This
function is of (0, 2)-type and its divisor has the form
(2) (@) =T+sS,—tS.
where T is an irreducible curve and s and t are integers satisfying
1<s<m, s<t<nand (m,s)=1. The degrees of the curves S, S.. and T
are n, m and mt—ns, respectively. Then, the rational function
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f=¢™/R* is of (0,2)-type, and f takes a constant value on S,, We
normalize this value to be —1. In this case we call [R, ¢] a normalized
pair. Then we have

(3) (F+1D=8,+ U—(mt—ns)S.,

for an irreducible curve U.

3. By successive blowing-up’s at the indeterminate point of R,
we obtain p: M— P? so that R-p has no more indeterminate point.
Let 2 be the inverse image of the indeterminate point of K by p.
Then we can explicitely give the graph of 3. Here the graph of ¥
means the set of dots, which represents the irreducible components
of 3. If two irreducible components intersect, we join the two cor-
responding dots by the segment. The integer attached to the dot
gives the absolute value a of the self-intersection number —a of the
corresponding component. In order to explain the possible graph for
Y, we prepare several notations. For a graph G, we mean by G? the

graph G—G—---—G. For 10, by G, we denote the graph
S ——— e ——
j_lp-tlmes J-1 5 £ =271 (>1)
( 7 5 2 2 2 2 3 2 oril=za)—1Q=
and
j j . .
( 7 2 2 3 2 2 2 2 2 for 1=27 (jz0).

We understand @-1 by the empty graph. By Ii, (I=1), we denote the
graph deleted five <2> in the right end from G,. By *G, (resp. G;)

(1=0), we denote the graph obtained from @L by increasing the number

on the extremely left (resp. right) by one. *Hl is obtained from H, .

by increasing the number of the extreme left by one and +H- is

obtained from *H, by decreasing the extreme right number by one.

The graphs @L, H ., ete. are the graphs obtained by reversing direction.
A+1

i-1 -1

The graph —é?— means O O o when 1>1.

b
(2 ¢ c—1
When 2=0, O—0 (b=0, ¢=3) means —I:a .

2 a
Theorem 1. All possible graphs for X are listed as follows.
II(D) 1=0): éz—?—ém-

II*(,N; 2, ---,2y): when N is a positive even integer (N =2)
él él él al
éz“?_Ht+1 3 z++1—'é>_ +Hz+1‘ : '+ﬁt+1—d?'—ﬁz++1 '—%—J'Gzn ,
N N-1 2
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when N is an odd integer (N=1)

Gl Gl él t—;
i )
él—o—-ﬁ;+1__é_+ﬁl+l_©5— ﬁtﬂl‘ . +Hl+l_©—ﬁl++1 _©—+@l+l-
1 Ay An-1 A3 A

II-,N; A, ---,Ay): when N is an odd integer (N=1)

é; él él
Ax Av-1 A
when N is an even integer (N=2)
él él él
az —O— 'ﬁfﬂ_é—JrHtu_a@—"Hﬁl' © +ﬁz+1 _—do); 61-1.
1 Ay An-1 A
Here 2, - - -, Ay are integers such that 2,0 when N=1 and 2,=1 when

N=0.
For example, II*(1,2; 2, 0) means the graph
4 2 2 2 2 2 83 22 2 2 25

5§ 2 2 2 2 2 17 2 2 3 2 2 8 2 2 2 8 2 2 3 2 2 2 2 2°

4. Let[R, ¢] be a normalized pair belonging to II(l). Then, m,
n, s, t and mt—mns for the [R, o] given by (1), (2) and (3) are respec-
tively m,;, m,.,, S;, 8;., and 3 defined by m,=38m,_,—m,_,, my;=2, m;=5
and s,=m,—m,_,. For [R, ¢] belonging to II*(}, N, 2, - - -, 2y), M, N, S,
and ¢ are respectively m;, nf(N, A, - - -, 2y), sE(N) and (N, 4, - - -, Ax)
given as follows; s;(N)=s, for an even N,=m,_, for an odd N, s;(N)
=85/ (N—1), n7(N, 2, - - -, ) =My, [[12 Ami+msi(©)—1) and ¢7(N, 4,
ey ) =QymsE(N)+ (sE(N)+ 2 (N—1, 2y, - - -, Ay-1), Wwhere n;(0)
=My, 1.

Theorem 2. We define the rational functions R, and ¢, by

Rz=(so§”_’1+R§L_1)’”‘/(Rz_1)"”‘"“, 901=SDz—1(902@1+R;L—1)”/(Rz-1)(m2
for 1=1 and
Ry={(y—2) —2zy*(y— 2" + ¥}/ (y — &*)°
o= (2y —2* —y){(y — 2*) =20y (y — ) + ¥’} (y — &))"

for an inhomogeneous coordinates (x,y) of P:. Then (R,¢) is a
normalized pair in II(1). Conversely, any [R, ¢] in II()) has the form
[c™R,, c*p,] for some ¢ € C* and some inhomogeneous coordinates (z, y)
of P2

In this case, S., U and T for [R,, ¢,] given by (1), (2) and (3) con-
cide with S,, S., and T for [R,_,, ¢,_,] respectively.

Theorem 3. If (R,¢) is a mnormalized pair belonging to
II:({,N; 2, ---,2y), then there ewxist unique a,€C (=1, ---,2y),
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0., €C* and o mormalized pair [R’,¢’'] belong to II*(l, N—1, 2,
<oy Ay-y) Such that
R=Pm‘/(R’)”"‘”li(N'l), So:(épsf(zv))/(R/)uml_esl

where &§=¢'+Y W q (R and P=&" 4+ (R ¥V,  Conversely the
(R, p) given in this way is a normalized pair in II*(l, N, 2y, - - -, 2y).
Here we assume 120, N=1 for II* and =0, N=2 for 11-.

In this case, U and S.. for [R, ¢] are S, and S.. for [R’, ¢’] respec-
tively.

Theorem 4. For a,eC (=0, ---,2—1) and a, € C*, we set

R=P™[(R,_ )" ™, e=EP*)[(R,.)**
when E=¢,_+ i a;R % and P=&™+Ri,. Then (R, ) is a normal-
ized pair in I1-(l,1; ). When l=0, we assume a,=0 and we set
R_ =y (y—2") and o_ =y 'a.

Conversely any [R,¢] in I11-(l,1;2) is written in this form up to a
constant multiple.

In this case, S. and U for [R,¢] are S, and S.. for [R,_,, ¢,_]
respectively.

As corollary to the above results, we can give explicitly the equa-
tions defining S,, S.. and T by the similar recursion formula.
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