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45. On Totally Geodesic Hermitian Symmetric
Submanifolds of Kahler Manifolds

By Kazufumi NAKAJIMA™®) and Yutaka SE-ASHI**)
(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1982)

1. Introduction. Let M be a Kéihler manifold with a Kéahler
metric ¢ and a complex structure J. We denote by Aut’(M) the
identity component of the group of all holomorphic isometries of M
and by g(M) the Lie algebra of Aut’(M). For each X e g(M), X* means
the vector field on M generated by {exp tX},cr. Then the correspond-
ence : X—X* can be extended to a linear mapping of g(M)¢, the com-
plexification of g(M), to the Lie algebra X(M) of all vector fields on M
by putting (W —1X)*=JX* for X e g(M). We set for pe M

(D) ={X e g ; 7,(X*) =0},
where 7,(X*) denotes the 1-jet of X* at p. If M is a hermitian sym-
metric space, then dim M =dim b'(p) for any p ¢ M. In this paper, we
shall prove the following

Theorem. Let M be a Kihler manifold. For each point pe M,
there exists a totally geodesic hermition symmetric submanifold M(p)
through p such that

() dim M(p)=dim b'(p).

(b) Let f be a holomorphic isometry of M and q=f-p. Then
J-M(p)=M(qQ).

2. Let K, be the isotropy subgroup of Aut"(M) at p and let f, be
the Lie algebra of K,. We set

m(p)={the real part of X ; X ¢ b'(p)}.
Since b'(p) is an Ad K ,-invariant complex subspace, m(p) is an Ad K-
invariant subspace of g(M) and m(p)={the imaginary part of X; X
e b))

For each & ¢ X(M), we denote by A, the tensor field of type (1, 1)
defined by

Av=-"z¢, forve T,(M),
where V' denotes the riemannian connection. Note that A,=_L,—7 ..

Lemma 1. For every X e m(p), (Az»,=0.

Proof. There exists Y e m(p) such that X++/—1Y e 6'(p). Then
for any ve T,(M), (Axr,sp0,v=—V (X*+JY*)=0. Since X* and Y*
are infinitesimal isometries, both (4.), and (4,.), are skew-symmetric
with respect to g. Let § e X(M). Then Jo(4,),&,=J[Y*, &],—J(Fyf),
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=(Ay.), 0 JE, because Ly.J=0 and FJ=0. Then for any u, v e T,(M),
9((A,p),u, v) = g(=V,(JY*), v) = g(J o (Ay), %, v) = — 9(Ay), %, JV)
=g, (Ay), o Jv)=gW, J o (Ay),v)=9gW, (A,;y0),v). Therefore (4,,), is
symmetric with respect to g and hence (4,.),=(4,,),=0. Q.E.D.

Lemma 2. (a) m(p)N¥{,=0 and [m(p), m(p)1Ct,.

(b) There exists a unique complex structure I of m(p) satisfying
UX)}=JX} and the correspondence: X—X + v =1IX gives an isomor-
phism between m(p) and H'(p).

Proof. LetX e m(p)N¥,. Then (A,.),is the linear isotropy repre-
sentation of X at p. From Lemma 1, we know (4,.),=0 and hence X
=0. Nextwetake X, Y em(p). Then[X, Y]}=—[X* Y*],=F,.X*),
=—FuY*),=—(Ax), Y+ (4,),X}=0, proving (a).

We know form (a) that for each X e m(p) there exists a unique
element Y of m(p) such that X++/—1Y € b'(p). If we define an endo-
morphism I of m(p) by IX=Y, then (X+ «f:iIX);,f< =X¥+J(UIX)}=0.
Therefore we get (b). Q.E.D.

Lemma 3. For each X € m(p), we set y(t)=exp tX-p. Then ()
18 a geodesic.

Proof. Since X is an infinitesimal isometry, V(4 z) = R(X*, X*)
=0, where R denotes the curvature tensor (cf. P. 235, [3]). Therefore
the tensor field A ;. is parallel along y(t). We have (4,.),,=0 because
(Ay),=0. Hence V;,7t)=—(Ax),X*=0. Q.E.D.

3. We can now prove Theorem. By (a)of Lemma 2, [=f,+m(p)
is a subalgebra of g(M). Let L denote the connected subgroup of
Awut’(M) corresponding to [. We put

M@)=L-p=L/LNK,.

Note that LN K, is compact because the Lie algebra of LN K, is equal
to f,. By (b) of Lemmas 2 and 3, M(p) becomes a totally geodesic
complex submanifold of M. Let N be the closed subgroup of L defined
by N={aeL;a-g=q for any g M(p)}. N is a normal subgroup of
L contained in LN K, and the Lie algebra n of N is an ideal of [ satis-
fying n={X ¢ t,; [X, m(p)]=0}. Weput ’=L/N, K'=LNK,/N and
U=[/n=f,/n+m(p). Then M(p)=L'/K’. The automorphism ¢ of [
defined by ¢|,,=1 and ¢|,,=—1 induces an involutive automorphism
¢’ of I’ and the pair (I,¢’) is an effective orthogonal symmetric Lie
algebra (cf. P. 229, [1]).

Let I. be the universal covering group of L’ with the covering
map : L—L’ and let K=0"'(K’). We denote by K° the identity com-
ponent of K. Then L/K" is a simply connected hermitian symmetric
space and we can obtain the decompositions L=L,xL_xL, and K°
=K,xK_xK, in such a way that L,/K,, L_/K_and L /K, are her-
mitian symmetric spaces of the Euclidian type, compact type and non-
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compact type respectively. Let r_ and =, be the projections: L—L_
and E—»L+ respectively. It is easy to see that the Lie algebras of
z_(K) and =, (K) are those of K_and K,. Since (L,,,(K)) is a pair
associated with an orthogonal symmetric Lie algebra of non-compact
type, . (K) is connected and hence z,(K)=K, (cf. P. 253, [1]). Note
that z_(K) is a compact subgroup of L_ (cf. P.282,[1]). Then the
homogeneous space L_/ 7_(K) has a Kihler metric such that the cover-
ing map: L_/K_—L_/x_(K) is isometric. Since L_/K_ is a hermitian
symmetric space of compact type, the Ricei tensor of L._ /n_(IZ) is
positive definite and hence L_/x_(K) is simply connected (Kobayashi
[2]). Asa result, z_(K) is conneced and hence z_(K)=K_. We thereby
obtain K=KNL,xK_xK, and M(p)=L,/JENL,xL_/|K_XL,/K,. It
remains to show that L,/KNL, is symmetric. We write L,/KNL,
=I"\C", where I' is a discrete subgroup of holomorphic isometries of
C"(=L,/K;). Since L, contains all translations of C*, each element of
I commutes with all translations. As a consequence I' consists of
translations and hence L,/ KENL, is symmetric. By construction,
dim M(p)=dim b'(p). Let f be a holomorphic isometry of M and ¢
=f-p. Clearly AdfK,=K, 6 and Ad f0'(p)=b'(q). Therefore Ad fm(p)
=m(q) and hence M(q)=f-M(p), completing the proof.

Remark. We can show that M(p) is locally symmetric more
directly from the following fact: Let & be an infinitesimal affine trans-
formation of a manifold M with an affine connection I. If (4,),=0.
Then V', R=(L.R),—(A.R),=0, where R denotes the curvature tensor.
Similarly we get V', T =0 for the torsion tensor 7.

As an immediate corollary of the proof of Theorem, we have

Theorem 4. Let M be a connected Kahler manifold. Assume
that there exists a point p € M such that dim 0'(p)=dim M. Then M
s o hermition symmetric space.

Proof. Let M(p) be the submanifold of M constructed in the
proof of Theorem. Then M(p)is open. Hence there exists ¢e>0 such
that the e-neighborhood U of p contained in M(p). Let g e M(p). There
exists p’ e M(p) such that d(p’,¢)<e, where d denotes the distance
function. Since M(p)=L-p, there exists fe L such that f.p=p’.
Clearly f-'-qe U. Therefore there exists /' ¢ L such that f~'-q=75"-p.
Then ¢=f-f"-p and hence M(p)=M(p). Q.E.D.

Remark. In the case where M is a Siegel domain of the second
kind, our hermitian symmetric submanifold M(p) is holomorphically
isomorphic to the symmetric Siegel domain S constructed in [4].
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