4. A Calculus of the Gauss-Manin System of Type A_l . I The Residual Representation

By Shinzo Ishiura*) and Masatoshi Noumi**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1982)

The present note is the former half of our article titled "A calculus of the Gauss-Manin system of type A_i ". For the latter half, see [4].

0. Introduction. Let $F = x^l + t_2 x^{l-2} + \cdots + t_t$ be the versal deformation of the isolated singularity $x^l = 0$ of type A_{t-1} and consider the integral

(0.1)
$$u(t) = \int \delta(F(x,t))dx, \qquad t = (t_2, \dots, t_l).$$

In the present article, we propose two types of explicit representations of the Gauss-Manin system H_F of type A_{l-1} i.e. the system of microdifferential equations associated with the integral (0.1). (Theorems 1 and 5.) In Theorem 1, we give a matricial representation of the Gauss-Manin system H_F for the flat basis, which we call the residual representation. (See no. 2.) In Theorem 5, we propose the Hamiltonian representation of H_F in terms of the flat coordinates introduced by K. Saito, T. Yano and J. Sekiguchi [2]. (See no. 4.) Our construction of the two representations is based on an interesting connection between the flat coordinates of type A_{l-1} and the fractional power $F^{1/l}$ of F. (See nos. 1 and 3.) The Hamiltonian representation allows us to calculate explicitly the quantized contact transformation which reduces the Gauss-Manin system H_F to a standard form (Theorem 6). The details of the following arguments will be published elsewhere.

1. The flat basis. Let R be the polynomial ring $C[s_2, s_3, s_4, \cdots]$ of countably many variables s_2, s_3, s_4, \cdots and $R((x^{-1}))$ the ring $R[[x^{-1}]][x]$ of formal Laurent series in x^{-1} with coefficients in R. By the definition, each element ϕ of $R((x^{-1}))$ is written as a formal sum

$$\phi = \sum_{i=0}^{\infty} \phi_i x^{m-i},$$

where m is an integer and $\phi_i \in R$ for each $i \in N$. Such a ϕ is said to be of degree m if $\phi_0 \neq 0$. We denote by $\operatorname{Res}_x(\phi)$ the coefficient ϕ_{m+1} of x^{-1} and by $(\phi)_+$ the polynomial part of ϕ :

(1.2)
$$(\phi)_{+} = \sum_{i=0}^{m} \phi_{i} x^{m-i}.$$

^{*} Department of Mathematics, Keio University.

^{**} Department of Mathematics, Sophia University.

The residue symbol Res_x is characterized as the unique R-homomorphism $R((x^{-1})) \rightarrow R$ satisfying the following conditions:

- i) $\operatorname{Res}_{x}(\partial_{x}(\phi)) = 0$ for any $\phi \in R((x^{-1}))$ and
- ii) $\operatorname{Res}_x(\partial_x(\phi)/\phi) = \operatorname{deg}_x(\phi)$ if $\phi \in R((x^{-1}))$ is invertible, where $\partial_x = \partial/\partial x$.

For the variables s_2, s_3, s_4, \cdots in R, we set

(1.3)
$$f = x + \sum_{i=0}^{\infty} s_i x^{1-i}.$$

Moreover, we define two sequences $(F_k)_{k\in\mathbb{N}}$ and $(e_k)_{k\in\mathbb{N}}$ of monic polynomials in R[x] by

(1.4)
$$F_k = (f^k)_+ \text{ and } e_k = (\partial_r(f)f^k)_+.$$

Proposition 1. Let $(F_k)_{k \in \mathbb{N}}$ be as above. Then we have

(1.5)
$$\deg_x (lF_i \partial_x (F_k) - kF_k \partial_x (F_l)) \le l - 2 \text{ for } k \le l$$
and

(1.6)
$$\deg_x(\partial_{s_i}(F_i)\partial_x(F_k) - \partial_{s_i}(F_k)\partial_x(F_i)) \le l-2 \text{ for } k \le l.$$

Proposition 2 (Flatness of $(e_k)_{k\in\mathbb{N}}$). Let $(e_k)_{k\in\mathbb{N}}$ be as in (1.4). Then, for any integers i, j and k with $0\leq i, j\leq k$, we have

$$ext{Res}_x \left(e_i e_j / e_k
ight) \! = \! egin{cases} 1 & & ext{if } i\! +\! j\! -\! k \! =\! -1, \ 0 & ext{if } i\! +\! j\! -\! k \! =\! -1. \end{cases}$$

In view of Proposition 2, the sequence $(e_k)_{k\in\mathbb{N}}$ will be called the *flat* basis for R[x].

Now let $F = x^l + t_2 x^{l-2} + \cdots + t_l$ be the versal deformation of the isolated singularity $x^l = 0$ of type A_{l-1} . Let R_l be the polynomial ring $C[t_2, \dots, t_l]$ of l-1 variables t_2, \dots, t_l and $R_l((x^{-1}))$ the ring of formal Laurent series in x^{-1} with coefficients in R_l . Then we can take the fractional power $F^{1/l}$ of F in $R_l((x^{-1}))$:

(1.7)
$$F^{1/l} = \sum_{i=0}^{\infty} (1 + t(u))_i^{1/l} x^{1-i},$$

where we set

$$t(u) = \sum_{i=0}^{l} t_i u^i$$

for an indeterminate u and $(1+t(u))_i^{1/i}$ stands for the coefficient of u^i in the Taylor expansion of $(1+t(u))^{1/i}$. Noting this, we define a ring-homomorphism $\rho_i: R \to R_i$ by

$$\rho_i(s_i) = (1+t(u))_i^{1/l}$$
 for $i=2, 3, \cdots$

Then the kernel of ρ_l is the ideal J_l of R generated by the polynomials $(1+s(u))_l^l(j>l)$, where $s(u)=\sum_{i=1}^{\infty}s_iu^i$. The isomorphisms of rings

$$R/J_i \xrightarrow{\sim} R_i$$
 and $R/J_i((x^{-1})) \xrightarrow{\sim} R_i((x^{-1}))$

will be called the homomorphisms of l-reduction. With this identification, the l-reduction of F_k , e_k or s_i will be denoted by the same symbol. Then we have

(1.8)
$$F_k = (F^{k/l})_+ \text{ and } e_k = \frac{1}{k+1} (\partial_x (F^{(k+1)/l}))_+$$

in $R_{i}[x]$.

2. The Gauss-Manin system of type A_{l-1} .

Fix an integer $l \ge 2$ and consider the versal deformation

$$F = x^{l} + t_{2}x^{l-2} + \cdots + t_{l}$$

of type A_{i-1} . Let (y_2, \dots, y_i) be a coordinate system for the space of parameters (t_2, \dots, t_i) such that

- i) y_j is a polynomial without constant term in (t_2, \dots, t_l) for $j = 2, \dots, l$, and
 - ii) $\partial_{t_i}(y_i) = 1$ and $\partial_{t_i}(y_i) = 0$ for i < j.

We recall the Gauss-Manin system \underline{H}_F for F i.e. the system of micro-differential equations associated with the integral of the delta function $\delta(F)$. (For the details, see F. Pham [1].)

Let $Z=C^l$ be the complex affine l-space with coordinates (x,y_2,\cdots,y_l) and $S=C^{l-1}$ the complex affine (l-1)-space with coordinates (y_2,\cdots,y_l) . Then the sheaf $\mathcal{C}_{[F]}$ over the cotangent bundle T^*Z is the microlocalization of the sheaf $\mathcal{B}_{[F]}$ of algebraic hyperfunctions with supports in $\{F=0\}$ defined by

$$\mathcal{B}_{\Gamma F} = \mathcal{O}_{Z}[F^{-1}]/\mathcal{O}_{Z}$$

where \mathcal{O}_Z is the sheaf of holomorphic functions over Z. The modulo class of $-(1/2\pi i)\cdot 1/F$ in $\mathcal{B}_{[F]}$ or $\mathcal{C}_{[F]}$ is denoted by $\delta(F)$. Let ρ and $\tilde{\omega}$ be the canonical morphisms

$$T^*Z \stackrel{\rho}{\longleftarrow} Z \times T^*S \stackrel{\tilde{\omega}}{\longrightarrow} T^*S$$

and consider the relative De Rham complex $\underline{DR}_{Z/S}(\mathcal{C}_{[F]})$ with coefficients in $\mathcal{C}_{[F]}$. Then we set

$$\underline{H}_{F} = \underline{H}^{1} \left(\tilde{\omega}_{*} \rho^{-1} (\underline{\mathbf{D}} \mathbf{R}'_{Z/S} (\mathcal{C}_{[F]}) \right) = \int_{S-Z}^{0} \mathcal{C}_{[F]},$$

which is the integration of $C_{[F]}$ along the fibres of the canonical projection $Z \rightarrow S$. The sheaf \underline{H}_F over T^*S has a natural structure of a left Module over the Ring \mathcal{E}_S of micro-differential operators over S. Hereafter, we denote by H_F the stalk $\underline{H}_{F,(0,dy_l)}$ of \underline{H}_F and call H_F the Gauss-Manin system associated with F. With a canonical good filtration $(H_F^{(k)})_{k\in \mathbb{Z}}$, H_F is a simple holonomic system with generator

$$u = \int \delta(F) dx \in H_F^{(0)}$$
.

We remark that $H_F^{(0)}$ is a free module of rank l-1 over the ring $C\{y_2,\cdots,y_{l-1}\}\{\{\partial_y^{-1}\}\}$.

Now we take the sequence e_0, \dots, e_{t-2} of monic polynomials in $R_t[x]$ defined by (1.8) and set

$$u_i = \int e_i \delta(F) dx$$
 for $i = 0, \dots, l-2$.

Then u_0, \dots, u_{i-2} form a free basis of $H_F^{(0)}$ over the ring $C\{y_2, \dots, y_{i-1}\}\{\{\partial_y^{-1}\}\}$, which we call the *flat basis* for the Gauss-Manin system H_F .

The following theorem gives a "residual" representation of the Gauss-Manin system H_F as a system of micro-differential equations for the vector $\vec{u} = {}^{\iota}(u_0, \dots, u_{\iota-2})$ of unknown functions.

Theorem 1. Let u_0, \dots, u_{i-2} be the flat basis for H_F . Then the Gauss-Manin system H_F of type A_{i-1} is given by

(2.1)
$$\begin{cases} y_{i}\vec{u} = A_{0}\vec{u} + A_{1}\partial_{y_{i}}^{-1}\vec{u} & and \\ \partial_{y_{i}}\partial_{y_{i}}^{-1}\vec{u} = B^{(k)}\vec{u} & for \ k=2, \cdots, l-1. \end{cases}$$

Here A_1 is the diagonal matrix of size l-1 whose diagonal components are $(1/l, 2/l, \dots, (l-1)/l)$. A_0 and $B^{(k)}$ $(k=2, \dots, l-1)$ are determined by the following residual representations:

$$A_0=(a_{ij})_{0\leq i,j\leq l-2}\in M(l-1,C[y_2,\cdots,y_{l-1}]),$$

where

(2.2)
$$a_{ij} = l \operatorname{Res}_{x} (e_{i} e_{i-2-j} (y_{i} - F) / \partial_{x}(F))$$

and

$$B^{(k)} = (b_{ij}^{(k)})_{0 < i,j < l-2} \in M(l-1, C[y_2, \dots, y_{l-1}]),$$

where

$$(2.3) b_{ij}^{(k)} = l \operatorname{Res}_{x} \left(e_{i} e_{i-2-j} \partial_{y_{k}}(F) / \partial_{x}(F) \right).$$

Theorem 1 is a consequence of Propositions 1 and 2 in no. 1.

By the compatibility condition of the system (2.1), we have Proposition 3. (i) $[B^{(k)}, A_0] = 0$ for $k=2, \dots, l-1$ and

(ii)
$$[B^{(k)}, A_1] - B^{(k)} = \partial_{n_k}(A_0)$$
 for $k = 2, \dots, l-1$.

References

- [1] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Birkhäuser, Boston (1979).
- [2] K. Saito, T. Yano, and J. Sekiguchi: On a certain generator system of the ring of invariants of a finite reflection group. Comm. in Algebra, 8(4), 373-408 (1980).
- [3] K. Saito: Primitive forms for a universal unfolding of a function with an isolated critical point (preprint).
- [4] S. Ishiura and M. Noumi: A calculus of the Gauss-Manin system of type A_i . II (to appear in Proc. Japan Acad., 58A(2)).