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Schwinger.Dyson Equation
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Department of Mathematics, Tokyo Institute of Technology

(Communicated by K.Ssaku YOSIDA, M. J. A., Dec. 12, 1981)

1. Statement of the result.
solution of the following equation.

In this note, we give an explicit

/o ip.(t)Z(p, u)/ p(x) 3Z(p, u) dx
@.(t) u(x, t)

(1.1) or -- 1, 2, ., N
]

3Z(p, u) iu(x, t)Z(p, u)+ p(x) 3Z(p, u)
 u(x, t) o--,

with subsidary conditions given by

(Z(O, O)=,... Z(O, O) ,1, =-- for any a=l 2,... N,
(1.2) o @.(tO@.(t)

/" Z(0, 0) "- x-tim l,.( -x, t, t).
o u(x, t)u(x, t)

Here Z(p, u) is an unknown complex valued unctional of (p, u), p(t)
=(p(t), p(t),..., p(t)) and u(x, t) are real valued unctions on R and
RR, respectively, p(x) is a given radially symmetric real valued
unction in C(R), o and 2 are positive constants called the (renorma-
lized) spring constant and the coupling constant respectively, K] stands
or K]v=v---_x Vx and the symbols /@(t) and /3u(x, t) are func-
tional (or Volterra) derivatives, zig(t) and l(x, t) are distributions,
called Feynman propagators, given by

(1.3) A(t)=L(O(t)e- +O(-t)et)
and

1 [(O(t)e_i,t+ix.._.O(_t)e,,_x.)d(1.4) l(x, t)-- 2(---2z) Re

where O(t) is the Heaviside unction. We denote the operators having

as its kernel A(t) and A(x, t) by (d/dV+w)7 and 7 respectively.
This equation stems rom ’quantizing’ the ollowing Lagrangean

by the method of Schwinger-Dyson.

L(q, v)=) f (O.(t)-q(t))dt
1 ])dxdt(1.5) +f, I, (v(x, t)-- ,Vv(x, t)
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p(x)v(x, t) , q(t)dxdt
R R3 =1

where

q=(q,, q2, "", q), }v(x, t)12= IVxjxj(x, t)l
j=l

and (l.(t)=(d/dt)q.(t). The equation (1.1) is obtained from formal
calculation of the ’imaginary’ expression of Z(p, u) given by

(1.6) Z(p, u)=
exp-L(q, v).exp ---((q, v}+(v, u})dr(q)dF(v)

where

(q, p}= , q(t)p(t)dt, (v, u} v(x, t)u(x, t)dxdt
R a=l R

and d(q)= I]= d(q) and d(v) are ’Feynmn measures’.
In order to state our theorem, we need the 2ollowing
Proposition. If we define as

(1.7) =+2N () I -x

(2) [l
d$, p()= P(x)e "dx,

then the operator A, defined below is invertible as an operator from
H’(R) to H-(R).

(A,v)(t) (--+)v(t)
(1.8) --2N f, f f, p(x)A(x- y t-s)p(y)v(s)dydsdx

for v e H(R).
Theorem. Define as above, then the functional Z(p,u) given

below is well defined on (H-’(R))(RR) and satisfies (1.1) with
(1.2).

(1.9)
" N2(A[,1N(p, Vu), (p, u))
2

where the meaning of brackets are given in the proof.
WhenN 1, there are several articles treating the second quantized

problem corresponding to (1.5). (For example, Arai [1], [2], Schwahb-
Thirring [6], they use the Fock space representation. It seems rather
rare to treat the equation (1.1) directly even in physical articles.)
Physically we may say that the second quantized problem of (1.5),
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means a system of one 1-dimensional non-relativistic oscillator inter-
acting with the quantized massless neutral scalar field in R at x=0 if
we may take p(x)=(x).

Our point is to solve the equation (1.1) directly without managing
(1.6) and this point of view will be helpful towards the proposal by
Gelfand [4].

Detailed proof will be appeared elsewhere.
2. Sketch of the proof. (For simplicity, we treat only the case

N=I.) As the independent variables p(.) and u(.,.) are defined on
different spaces we must separate x and t in order to obtain equal
footing independent variables. To do so, we approximate R by a big
box /2 containing the support of p(x) and using the eigenfunctions

{w(x)} of z/, we express u as u(x, t) ,__ %(t)w(x) and identify u
with {%}. Here, {w} are defined by

z/w(x) =/.w(x) in 9,(2.1)
[wj(x)la= 0.

By simple calculation, we deduce the following from (1.1).
Z(p, u)A Z(p, u) -ip(t)Z(p, u)- p

@(t) = %(t)
(2.2) 3Z(p, u) --i%(t)Z,(p, u)--2p Z(p, u)A %(t) @(t)
where

d dA= dt--./o, A=-t+ and p=j, p(x)w(x)dx.

Lemma. The solution of (2.2) with subsidary conditions (2.4)
given below is

(2.3)
--2(;(p, ;u), (p, ;u))+i2((p, ;u),

[z,(o, o)=
(2.4) lim Z,(0, 0) =(t-s), lim 3Z,(0,0) =A],(t-s).

[
Where the kernels of the operators -1 and. A, are given by

(2 5) -1 (x, y, t)= w(x)w(y) (O(t)e_,+O( t)e,t)F,

and

(2.6) A].(t)= 2
and the operator A is defined by

(2.7) (Aq)(t)=(Aq)(t)- 2 O(z)((oq))(z, t)dz
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(Aq)(t) --, p(A,q)(t).
j=l

After making t9 to R in (2.3), we have the desired result (1.9).
Above procedure explains the construction of (1.9) rather formally.

Now, we give the meaning to the brackets in (1.9),. Applying the
Fourier transform in t in (1.8) and using Plancherel formula in space
variables, we have

(2.8) D (r)0(r)=[(-r) 1 ()’1+(2) r_{l+iO
d

where

((r)-- eq(t)dt’ () I,, e-z’w(x)dx"
If we define as in Proposition, D+(r) never vanishes or e R.
(Lemma 4.4 of Arai [3]). Then the invertibility o the operator A,
(= A) and the boundedness of A; rom H-(R) to H(R) follow directly.
So, (A;p, p) has the meaning or p e H-(R) where (,) stands or the
duality between H(R) and H-(R). For any u e 3(R R), 7u belongs
to 3’(R R). So we may regard the term (71u, u) as the duality be-
tween q(RR) and ’(RR). Modifying the proof o Lemma 4.3 of
Arai [1], we may show easily that the terms (p, [7lu) and (p, []71(pp))
belong to H-(R) for any p e H-(R) and u e 3(R). (See, Bogolubov et
al. [3] and Geffand-Shilov [5]).

So the unctional Z(p, u) defined by (1.9) is well defined on H-(R)
q(RaR). Calculating Gateaux differentials of Z, we may show
easily that Z satisfies (1.1) with (1.2).

For any N, we may proceed analogously.
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