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0. Introduction. Let g0 be a real semisimple Lie algebra and
let g0 0+0 be a Cartan decomposition of go. We complexify 0, 0
and P0 and denote them by g, and p, respectively. Let G be the adjoint
group of and let K be the analytic subgroup of G corresponding to. Since [, p] is contained in p, K naturally acts on p and it follows
from the theorem of Chevalley (see Helgason [6])that the quotient
space p/K of p by the action of K is isomorphic to an ’affine space C
with a certain integer n. The nilpotent subvariety N(p) of p is the
totality of nilpotent elements of contained in p and is also the fibre
of z(0), where z: p--p/K is the natural quotient map (see Kostant-
Rallis [9]). For any element X of N(p) there is a linear subspace Ux
of p such that S:--X+ Ux is transversal to the K-orbit of X at X.
Then there appear singularities in the intersection of Sx with N(p).

The most typical example of the singularities appeared in this
manner is a rational double point (or it is also called a two-dimensional
simple singularity). We now explain this shortly. In this case, we
take 0 as a complex simple Lie algebra as a real one. Then 0 is a
compact real form of 0 and is isomorphic to p and the action of K
on p- is nothing but the adjoint action. Under the situation the
results of Brieskorn [4] and Sloclowy [10] assure that if we take X as
a subregular nilpotent element of N() then the variety Sz N(p) be-
comes a surface and the singularity of the surface is a rational double
point. In particular, if the root system of is homogeneous, that
is, the type of is one of A, Dr, E, E or Es, then the singularity of
Sx N(p) is a rational double point of the corresponding type:

(A) x +1+y+z=0
(D) x-+xy+z=O
(E) x +y+z= O,
(E) xy+y+z O,
(E) x +y+z O,

(/>=1),
(/__>4),

and moreover the restriction c:Sxp/K of z to Sx is a semiuniversal
deformation of the rational double point.

In the present note, we treat the case when g0 is a normal real
form of a complex simple Lie algebra and examine the singularity of
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Sz ( N(p) corresponding to a "subregular" nilpotent element X of N(O).
The main results are stated in Theorems 3 and 4, which explain a
connection between the symmetries of a rational double point and
Cartan involutions.

1. Subregular nilpotent elements of an infinitesimally symo
metric space. Let tt be a complex simple Lie algebra, g0 a real form
of g and t a Cartan involution of g0 (see Helgason [6]). We extend
to g as a complex linear automorphism. Set {X e ; O(X)=X} and
o={X e g;0(X)=-X}. Then we obtain the complexifiecl Cartan de-
composition g + p. We call p an infinitesimally symmetric space in
this note. For later convenience, we say that p is of the normal type
if the corresponding 0 is a normal real form of (see Helgason [6]).
Let G be the adjoint group of g and let K be the analytic subgroup of
G correspending to . For any element k of K, Ad (k)l, is an auto-
morphism of p and in this way K acts on p.

The G-orbits of nilpotent elements of are already classified by
Dynkin (see Bala-Carter [3] and Steinberg [11]). Among all the
nilpotent orbits, we pay attention to two kinds of orbits. A nilpotent
element X is called regular (or subregular) if dim Z(X)= (or dim Z(X)
=l+2), where Z(X) is the centralizer of X in and is the rank of
Then we infer that the set of regular (or subregular) nilpotent elements
of g is a single G-orbit and we denote it by Nr.(g) (or Ns.r.(g)). An ele-
ment of p is called nilpotent if it is nilpotent as an element of g. We
now discuss the K-orbit structure of nilpotent elements of p. Vinberg
[12] already classified the K-orbits of them (see also Kostant-Rallis
[9]). But when p is of the normal type, we obtain more detailed in-
formation on K-orbits of arbitrary elements in p.

Theorem 1. Let g-- + p be a complexified Cartan decomposition.
Assume that p is of the normal type. Then for any G-orbit
we have p=.

Corollary. If p is of the normal type, then we have
and N. (g) p =/=.

Remark. (1) The claim of the theorem does not hold in general.
In particular, there is an infinitesimally symmetric space p which is
not of the normal type and such that N (g) p= and N..()

(2) In contrast to G-orbits of Yr.(g) and N..(g), N.(g) p is not
a single K-orbit and so is Ys.r.(g)( O.

In the sequel we always assume that p is of the normal type.
Under the assumption, the following holds.

Lemma 1. (1) For any element X of N.(g) p, we have
dim Z(X) p=/ and dim Z(X) =0.

(2) For any element X of N..(g) p, we have dim Z(X) p-l+ 1
and dim Z(X) - 1.
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Let X be ny element of . We denote by G. X the G-orbit through
X. Let Tx(G.X) be the tangent space to G.X at X. We identify
Tx(G. X) with a subspace of g and take linear complement Ux of
Tx(G.X) in , that is, =Tx(G.X)Ux. The ffine subspace S=X
+ Ux is transversal to G. X at X in and by this reason we call S a
transversal slice of G. X at X. In this terminology we have the ol-
lowing lemmu which is essential to proving the main theorems.

Lemma 2. Let X be an element of Ns.r.(g) p. Then there exists
a (--)-stable transversal slice Sx=X+ Ux of G. X at X in such that
dim (Ux )=codims (Sx P)= 1 and that Sx p is also transversal to
the K-orbit of X at X in .

Due to this lemma we choose a coordinate system (2,..., 2+,/)
of Sx such that the restriction (--0)ls acts. on S in the ollowing
manner (, ., 2/,/)(, ., 2 /, -/). We call this system a good
coordinate system.

2. Subregular nilpotent elements and simple singularities. In
this section situations nd notations re the same as above.

Let be a Cartan subalgebra o g and W the Weyl group of with
respect to . For convenience we assume that t; is contained in p.
This is actually possible, because p is. of the normal type (see Helgason
[6]). Let - be the adjoint quotient of g onto /W (see Slodowy [10,
p. 37]). We now mention a result of Brieskorn-Slodowy. Let X be
an element o N.r. () nd let S be transversal slice of G. X at X in .

Theorem 2 (Brieskorn [4], Slodowy [10, p. 136]). There is a
polynomial F(x, y, z) of three variables x, y, z and with paramet’ers
in /W such that -() Sx is locally biholomorphic to {(x, y, z) e C;
F(x, y,z)=0} for any element of /W. Corresponding to the type

of , F(x, y, z) is given by the following table:

A x/+y+z+x-+x-+ -t-x--/=O (/1),

B x+y+z+x-+x-+. +.t_x+:=O (/2),

C x+xy+z+x-+x-+. +_x+=0 (/=3),
x- z - +... +_x+_+’y=0D +xy+ +x +x- (/>=4),

E x+y+z+xy--xy+x+Y--x+--O,
E: xy+y+z+x+$x+sxy+oX+Y+x+s=0,

Es x+y+z+xy+xy+x+xY+sx+oY+x+o=O,
F x+y+z+xy+x+sy+=O,
G x +y+ z +xy+ O.

(In the table the indices of the parameters ,... (and ’ in the case

D) denote the weights of them.)
The surface singularity Fo(x, y,z)=O is called a rational double

point or a (two-dimensional) simple singularity by Arnol’d (see [1], [2])
and its deformation family {F(x, y, z)=0; e /W} is a semiuniversal
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deformation of F0(x, y, z)=0.
Now we observe the fact that F(x, y, z)-0 has. the following sym-

metries: z--z (in 11 the cases), x-x (in the cases. B, F3, y-y
(in the case C), xoy (in the cse G). We give an interpretation of
these symmetries in the 2ollowing main theorems.

Theorem 3. There is a subregular nilpotent element X of
Ns.r.() ( P such that if we choose a transversal slice Sx as in Lemma 2
and a good coordinate system (21, ., /1, l) of Sx, the involution

(-)I (, ...,,)(, ...,, z)
induces the symmetry z--z on the surface -1() Sz for any element
o Uw.

Theorem 4. Assume that the root system of is inhomogeneous,
that is, the type of is one of B, C,F and G. Then there is another
subregular nilpotent element Y of Ns.r.()f p not K-conjugate to X in
Theorem 3 such that if we choose a transversal slice Sr as in Lemma
2 and a good coordinate system (1, "’, /, [2), the involution

(-o)l: (, ..., ,/, z)(,, ..., ,+,
induces the symmetry x-x (in the cases B, F), y--y (in the case
C), xy (in the case G) on the surface -() Sr for any element
of /w.

The set of the fixecl points of ,-() Sx (or ,-() Sv) by the in-
volution (-0)ls (or (-O)]s) is a deformation of a one-dimensional
simple singularity in the sense of Arnol’d (see [1]). In particular we
obtain the following

Corollary (to Theorem 3). If the root system of is homogeneous,
that is, the type of is one of A, D, E, E and E, then the restriction

Sz O-/W of to the intersection S p is a semiuniversal defor-
marion of the one-dimensional simple singularity of the corresponding
type:

(At) xt+l+y.=O
(Dr) x -+xy2=0
(E) x+y=O,
(ET) x3y+y3=O,
(Es) x+y=O.

(/>__ 1),
(/4),

The proofs of Theorems 3 and 4 need the results of Slodowy [10],
Bala-Carter [3] and Elkington [5].

An extended version of this note and detailed proofs will be
published elsewhere.
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