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1.
of the form

where

Introduction. A Fourier integral operator A is an operator

Af(x)= (2u) f eS(x’)a(x, $)f()d,

f()= e-’f(y)dy

is the Fourier transform o f defined on R. We call S(x, ) its phase
function and a(x, ) its symbol function (c2. Eskin [6], HSrmander [10]).

When S(x, )= x. , a Fourier integral operator reduces to a pseudo-
differential operator. Beals-Fefferman [2], [3] proved the L bounded-
hess theorem or a quite wide class o pseudodifferential operators.
In this note we shall prove the L boundedness theorem of the operator
A with general phase function S and with symbol function a in the
Beals-Fefferman class. This theorem contains the above-mentioned
theorem o Beals-Fefferman as a special case, and the L boundedness
theorem of Fourier integral operators in Fujiwara [8] and Kumano-go
[12] as well.

2. Statements and results. Definition 2.1 (Beals [3], HSr-
mander [11]). Let b, be a pair of positive functions defined on R
R. We call , a pair of weight functions if , satisfy

(i) >=c,, _<_C, >=c;
(ii) (, ) (Y, V), (x, ) (y, V)

whenever [x-yl<=ro(y,v), I-]l<=ro(Y,V)
(2.1) (AB means that C-A/B<=C for some positive

constant C);

(iii) (x,)+ (x,) _C(l+(y,v ]x-y]+(y,z])I-V[);

or some positive constants c, C, c, Ct, r0 and a non-negative constant
Y.

are
Let a pair of weight functions , be fixed. Our assumptions

(A-l) a(x, ) is in S,,, that is, for any integer

la]-- max sup [aaa(x, )1 (x, )’"’(x,
[a+fl[k (x,)RnxR
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is finite.
(A-2) The real part S. of S satisfies the estimate

inf Idet [33S,(x, )]1>__30
(x,) RnR

for some pcsitive constant/0.
(A-3) For any pair of multi-indices ,fl for 1+fll2, the in-

equality
I3S(x, ) <= C,e(x, )-(x, )-

holds.
(A-4) The imaginary part S(x, ) of S(x, ) is non-negative.
Then we see from (A-l) and (A-4) that the defining integral in

(1.1) is absolutely convergent at least for f in q(R).
We denote the norm in L2(R) by II. Our result is"

Theorem. Let a(x, ) and S(x, ) be two C functions satisfying
the assumptions (A-1)-(A-4). Then there .exists a constant C>O such
that for any f in 3(R) we have
(2.2) Af C f.

Remarks. 1. When =(1+[[), =(1+[)-, 0pl, <1,
the assumption (A-l) is that a(x,) is in S,, in the notation of
HSrmander [10]. This theorem contains the result of Fujiwara [8]
and Kumano-go [12].

2. When ==1, the operator A turns out to be the oscillatory
integral transformation in Fujiwara [7], Asada-Fujiwara [1]. Fuji-
wara [9] used these operators to construct the fundamental solutions
of SehrSdinger’s operator.

3. Danilov [5] considered the operator A under the assumption
that e-S(,:)a(x, ) is in S, instead of (A-l).

3. Outline of the proof of Theorem. By the Planeherel’s
theorem we have only to prove that the integral operator

(3.1) u() e*(’)a(, )u()d$
R

is L bounded. We still denote by A this integral operator.
To prove L boundedness we shall use the following partition of

unity. Choose a non-increasing C function on R so that (t)=l
for t(R, (t)=0 for tR, for some R,R with O(R’(R((1/4)ro.
And for any (s, a)e RXR set

(,)(, )= 4((s, ) Ix-sl)4((s, )- I$-al)

where we put
(s, )= VC(s, a)/(s, ).

Then we can prove the following lemma (c. HSrmander [11]).
Lemma 3.1. 1) Each (, is supported in the set
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U(,o)(R) {(x, ) ;Ix-sl<=R(s, )-, I-zl<=R(s, )}.
2) For any positive integer m

3JRn

For p (s, a) in R X R set a(x, ) a(x, )(x, ) and define

Au(x)= eS(,:a(x,(3.2) )u()d.

Then we can prove the following proposition as in [1, Lemma 2.1].
P.roposition .2. Let u() be in C(R). Then
1) Au(x) e C(R).
2) [Au(x)gCu, where the constant C is independent of

p (s, ).

3) Au(x)= lim f A,u(x)ds,

where the limit exists at every x and with respect to the strong topol-
ogy in L(R) as well.

Therefore it is sufficient or the proof of Theorem to prove the
following

Proposition .. For any compact set K in RR we have the
estimate

(3.3) I A,u(x)dp[lM ,u,, u e C(R),

where the constant M is independent of K and u.
To prove Proposition 3.3 we shall ppeal to the ollowing lemma.

See CalderSn-Vaillancourt [4].
Lemma .4. Let h(p, p’) and k(p, p’) be two positive functions on

R R such that
AA, h(p, p’), AA, k(p, p’).

If h(p, p’) and k(p, p’) satisfy the estimates

; h(p, I (p, p’)dpM,

then we have the estimate (3.3) in Proposition 3.3.
Sketch of the proof of Proposition 3.3. We shall prove that A

in (3.2) satisfy the conditions o Lemma 3.4. The adjoint operator
A, of A, is given by

A,v()=[ e-(, a,(y, )v(y)dy.
R

Let H,,(x, y) denote the integral kernel unction of AA,. Then

H,,(x, y)= e(S(x,)-s(’))a(x, )a,,(y,$)d$.(3.4)

We introduce differential operator of order 1
L=p-(1-i min {2(p), 2(p’)} g(S(x, )-S(y, $)).g),

where
p=(1+min {(p), (p’)} ]g(S(x, )-S(y, )))/.
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Since Le(S(,)-s(,))-e,-,- we integrate (3.4) by parts and for
m= O, 1, 2, ., we have

H,,(x, y)= eS,)-s(,))(L)(aa,)d,

where L denotes the formal transposed operator of L. By induction
as Lemma 2.5 in [1] we have the estimate.

(L)(aa,)gCp-.
On the other hand we have the ollowing estimate.

Lemma .5 ([1, Lemma 2.1]). There exists a positive constant
such that

]gSa(x, )-gS(y,)] Ix-y].
Hence we can prove the ollowing estimate or H,,,(x, y).
Lemma .6. For any non-negative integer m we have

( )iai z 

{_y-s’ min {(p), 2(p’)}
[)/

where Z denotes the characteristic function of the ball (x x]R}.
Using the Schur’s lemma and Lemm 3.6, we have the 2ollowing
Lemma .7. 1) If ]a-a’]R(2(p)+2(p’)), then AA,=O.
2) If a-a’2R((p)+2(p’)), then we have the estimate"

) If s-s’]2R(2(p)-+2(p’)-), then
AA,Ca.

(ii) If 2R((p)-+(p’)-)s-s’]2R((p)+(p’)), then
]]AA,C a] (1 +min {2(p), 2(p’)} s-s’])-/.

(iii) If 2R((p)+(p’))s-s’[, then
I]AA,]]Ca (l+min {(p), (p’)} s-s’])-/.

We can prove the estimate or h(p, p’) in Lemma 3.4 2rom Lemma
3.7. In doing so we note that in case o (i) or (ii) o 2) in Lemma 3.7
we have

(p) (p’), (p) (p’) and thus 2(p) 2(p’).
In case o (iii) of 2) in Lemma 3.7 we distinguish two cases" (p)(p’)
and (p)(p’) and use the estimate (iii) o (2.1) in Definition 2.1.
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