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Operators in R”

By Kenji AsApa
Department of Elementary Education, Chiba Keizai College

(Communicated by Kosaku YOSIpA, M. J. A., May 12, 1981)

§ 1. Introduction. A Fourier integral operator A is an operator
of the form

@D Af@=E0 [ es=oa, @z,
where
f@=| erirway

is the Fourier transform of f defined on R*. We call S(x, &) its phase
function and a(x, &) its symbol function (c¢f. Eskin [6], Hormander [10]).

When S(x, &)=z £, a Fourier integral operator reduces to a pseudo-
differential operator. Beals-Fefferman [2], [3] proved the L*bounded-
ness theorem for a quite wide class of pseudodifferential operators.
In this note we shall prove the L* boundedness theorem of the operator
A with general phase function S and with symbol function « in the
Beals-Fefferman class. This theorem contains the above-mentioned
theorem of Beals-Fefferman as a special case, and the L* boundedness
theorem of Fourier integral operators in Fujiwara [8] and Kumano-go
[12] as well.

§2. Statements and results. Definition 2.1 (Beals [3], Hor-
mander [11]). Let @, ¢ be a pair of positive functions defined on R"
XR". We call @, ¢ a pair of weight functions if @, ¢ satisfy
(i) O&=e, §0§CZ, @50203;

(i) 0@ =0, 7, o, =oy,r
whenever |2—y|<rp(y, ), [§—9|<72H,7)
2.1) < (A=B means that C-'<A/B<C for some positive
constant C);

D(x,8) | olx,8) _ AN
(iii) 5.7 + oW, 7) <C.A+0W, |z—y|+oW, =D ;
for some positive constants ¢, C,, ¢, C,, 7, and a non-negative constant
N.

Let a pair of weight functions @, ¢ be fixed. Our assumptions
are:

(A-1) a(x,8) is in S3’, that is, for any integer k=0

|al,= max  sup mlazaéa(w,&)hp(x, &) d(x, &)

lat+gl=k (©,§) ER"X
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is finite.
(A-2) The real part S, of S satisfies the estimate
inf  |det[d,,0.Sx:(x, ©)I|=5,

(x,6) ER"XR™
for some positive constant 4,.

(A-3) For any pair of multi-indices «, 8 for |a+p|=2, the in-

equality
[0508S(x, )| C, ppo(, £)' 7' D(, £)17 17

holds.

(A-4) The imaginary part S;(x, &) of S(x, &) is non-negative.

Then we see from (A-1) and (A-4) that the defining integral in
(1.1) is absolutely convergent at least for f in S(R™).

We denote the norm in L*(R*) by | |. Our resultis:

Theorem. Let a(zx, &) and S(x, &) be two C= functions satisfying

the assumptions (A-1)-(A-4). Then there exists a constant C>0 such
that for any f in S(R™) we have
(2.2) NAFI=ClrI.

Remarks. 1. When @=(1+&)", o=A+|D% 0<0<p<Ll, 0<1,
the assumption (A-1) is that a(x,&) is in S, in the notation of
Hormander [10]. This theorem contains the result of Fujiwara [8]
and Kumano-go [12].

2. When @=¢=1, the operator 4 turns out to be the oscillatory
integral transformation in Fujiwara [7], Asada-Fujiwara [1]. Fuji-

wara [9] used these operators to construct the fundamental solutions
of Schrodinger’s operator.

3. Danilov [5] considered the operator A under the assumption
that e=57@9q(x, &) is in SY , instead of (A-1).

§3. Outline of the proof of Theorem. By the Plancherel’s
theorem we have only to prove that the integral operator
3.1 wer—| e =oate, Oueds
Rn

is L? bounded. We still denote by A this integral operator.

To prove L? boundedness we shall use the following partition of
unity. Choose a non-increasing C~ function 4» on R' so that (f)=1
for t<R/, ¥(t)=0 for t>R, for some R,R with O<R' <R<(1/d)r,.
And for any (s,o) € R* X R" set

Voo (@, &)= V(A(s, 0) |x—sPV(A(s, 0) ' [E—a])

([ vats,0) la—sDuas, o) le—oDdsdo

where we put
A(8,0)=VD(s,0)/0(s, 0).
Then we can prove the following lemma (cf. Hérmander [11]).
Lemma 3.1. 1) FEach v, is supported in the set
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UioR)={(x,8); |x—8|SRAs,0)7, |§—0a| SRS, 0)}.
2) For any positive integer m |V ,ola<Chn.

3) ij2n 1l’(s,a)(:x", E)d3d0'=1 fO’}" any (;L’, &) i R*X R".
For p=(s,0) in R"X R" set a,p(x, &=a(x, S)\b‘p(x, £) and define
(3'2) Apu(x):.j‘R eiS(z,f)ap(x, S)u(é)df.

Then we can prove the following proposition as in [1, Lemma 2.1].
Proposition 3.2. Let u(&) be in Cy(RY). Then
1) Au(x)e Cy(RY).
2) || A,u@)|<C ||\ull, where the constant C is independent of
p=(s,0).

3) Au(x)=lim j j Ay, u(x)dsdo,
Isl+lolsg

joroo
where the limit exists at every x and with respect to the strong topol-
09y in L*(R") as well.

Therefore it is sufficient for the proof of Theorem to prove the
following

Proposition 3.3. For any compact set K in R* X R" we have the
estimate
3.3) H J Apu(x)dp“gM lull,  weCyRY,
K

where the constant M is independent of K and u.

To prove Proposition 3.3 we shall appeal to the following lemma.
See Calderén-Vaillancourt [4].

Lemma 3.4. Let h(p,p’) and k(p,p’) be two positive functions on
R*™ X R*™ such that

A, A¥<h(p, D), A% A, |I<k(,D).
If h(p,p") and k(p,p’) satisfy the estimates
[ w@wap=n, | k@,p)dp<M,

then we have the estimate (3.3) in Proposition 3.3.
Sketch of the proof of Proposition 3.83. We shall prove that A4,
in (3.2) satisfy the conditions of Lemma 3.4. The adjoint operator

A¥ of A, is given by
Ap@=[ 50 4,0, Howdy.
Let H, ,(x,y) denote the inteRgral kernel function of A,A%. Then
(3.4) H, (@, p)=[  e=0-5T90,(a, &)a, @64
We introduce a differentiali operator of order 1

L=p*(1—imin {2(p), 2"}V .(S(x, &) —S¥, &) V),
where

p=1+min {2(p), AP} |V (S(z, &) —S(y, HH'
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Since LetS@-5wen — gitS@:0-5w,60 " ywe integrate (3.4) by parts and for
m=0,1,2, ---, we have

H,,@v)=|_ece00 0Ly ,a,)de,

where ‘L denotes the formal transposed operator of L. By induction
as Lemma 2.5 in [1] we have the estimate.
|CL)™(@,0,)| < Crp™™.
On the other hand we have the following estimate.
Lemma 3.5 ([1, Lemma 2.1]). There exists a positive constant 6,
such that
|V Sz(x, &) —V .Se(y, &)|=0, |x—y|.
Hence we can prove the following estimate for H, . (x, %).
Lemma 3.6. For any non-negative integer m we have
. g—a’ r—S
al,pxx,y)lgc|a|mxﬁ(———2(p) - 2QO,T)XR(TP)_, )
N < y—s' ) min {A(p), AP")}" ’
A(p)~t/ (14+min {A(p), AP} |[x—y[)"*
where y denotes the characteristic function of the ball {x; |x|<R}.
Using the Schur’s lemma and Lemma 3.6, we have the following
Lemma 3.7, 1) If |o—d'|=RQ®P)+A(p")), then A,A%=0.
2) If |o—d’|<2R(A(p)+ A(p"), then we have the estimate:
(i) If |s—¢|<2RQA®) " +20)"), then
4,A%=C |af.
(ii) If 2RG®) '+ 2(p) ) <Z|s—8'|<2R(p(p)+¢(p"), then
| 4,A%<C |af (L+min {2(p), Ap)}Y |s—s' ™"
(iii) If 2R(p(0)+ (@) <|s—¢'|, then
14,4511<C |af;, A4+min {D(p), D(p")}|s—s'D~™".
We can prove the estimate for i(p, »’) in Lemma 3.4 from Lemma
3.7. 1In doing so we note that in case of (i) or (ii) of 2) in Lemma 3.7
we have

() =P(®"), ¢(p)=¢(®’) and thus A(p) = iA(®’).
In case of (iii) of 2) in Lemma 3.7 we distinguish two cases : ?(p) <d(p")
and @(p)=d(p’) and use the estimate (iii) of (2.1) in Definition 2.1.
Acknowledgement. The author wishes to express his deep thanks
to Prof. Daisuke Fujiwara for his helpful advice and hearty encour-
agement.
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