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Introduction. U. Hirzebruch [3] and G. Rhinow [9] have gener-
alized Tits’ construction o Lie algebras by Jordan algebras [11] to
Jordan triple systems (JTS), using a certain two dimensional JTS.
Moreover H. Asano and K. Yamaguti [2] have generalized Hirzebruch’s
construction to generalized JTS o second order (due to I. L. Kantor
[4]), using the same two dimensional JTS. In this note, it is shown
that Lie algebras can be also constructed by generalized JTS o second
order (gen. JTS o 2nd order), using a certain two dimensional associ-
ative triple system (ATS) (c2. [6]). From a two dimensional triple
system W and any gen. JTS of 2nd order, we make gen. JTS
W(R) o 2nd order, where W is a certain ATS (see 1) while in [2],
W was a certain JTS. In both cases, Lie algebras cn be constructed
from W(R). In other words, Lie algebras can be constructed from
gen. JTS (@), o 2nd order (see 2) where in case e=-1 we have
the Asano-Yamaguti construction and in case = / 1, we obtain our

construction in this note. We assume that any vector space considered
in this note is finite dimensional and the characteristic o base field
is different rom 2 or 3. The author wishes to express his hearty
thanks to Pro. K. Yamaguti or his kind advices and encouragements.

1. A triple system satisfying {ab{cde)}={a{bcd}e}--{{abc}de}
{a{dcb}e} or any elements a, b, c, d, e is called an ATS.

Let W be a two dimensional triple system which has a basis {e, e}
such that
(1) {elelel}=e, {eele.}--{ee.e}=

{ele2e2}= {e2ele.} {e2e2e}---ties, {.ee2e2}=fle,
where a, fl e . Then W is a commutative ATS and is also a JTS. In
the ATS W, we have
( 2 l(a, b)l(c, d)--l(c, d)l(a, b),
( 3 ) l(a, b)l(c, d)=l(l(a, b)c, d)--l(c, l(b, a)d),
where l(a, b)c--{abc}, or a, b, c, d e W.

A gen. JTS o2 2nd order is a vector space with a triple product
{xyz} satisfying
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( 4 ) [L(x, y), L(u, v)]--L(L(x, y)u, v)--L(u, L(y, x)v),
( 5 ) K(K(x, y)u, v)-L(v, u)K(x, y)--K(x, y)L(u, v)-O,
where L(x, y)u={xyu} and K(x, y)u={xuy}-{yux}, or x, y, u, v e
([4]).

Hence a JTS is a gen. JTS of 2nd order such that K vanishes
identically.

Using (2) and (3), we have
Lemma 1. For the ATS W and any gen. JTS of 2nd order,

define a trilinear product in W(R) by {a(R)x b(R)y c(R)z}={abc}(R){xyz}
for a, b, c e W, x, y, z e . Then W(R) becomes a gen. JTS of 2nd
order.

A triple system is called a Lie triple system (LTS) if it satisfies
the following identities for any elements x, y, z, u, v ([5])"

( ) [xxy]=O,
(ii) [xyz] + [yzx] + [zxy] O,
(iii) [xy[uvz]] [[xyu]vz] + [u[xyv]z] + [uv[xyz]].

Let be a gen. JTS of 2nd order with product {xyz}. It is known
([2]) that becomes a LTS relative to a new product [xyz] "= {xyz}
--{yxz}+{xzy}-{yzx}. We denote this LTS by * and call this a LTS
induced by or an induced LTS (from ). For the gen. JTS W(R)
of 2nd order in Lemma 1, the Lie triple product (LT product) in
(W(R))* is as follows" [a(R)x b(R)y c(R)z]= {abc}(R)[xyz]. Hence D(a(R)x,
b(R)y)--l(a, b)(R)D(x, y)where D(x, y)z’=[xyz] andD(a(R)x, b(R)y)(c(R)z)"
=[a(R)x b(R)y c(R)z]. Let be the Lie algebra of inner derivations in
the LTS (W(R))*, then (R)(W, )=(W(R))* is the standard en-
veloping Lie algebra of the LTS (W(R))*. If :0 or fl0 in W, then
{ida, l(e, eD} is a basis of the vector space l(W, W) spanned by {l(a, b)"
a, b e W}, where id is the identity endomorphism in the ATS W.
He.nce =idw(R)D(, ) l(el, eO(R)D(, ), where D( ) is the Lie
lgebra of inner derivations in *. Then we have the following

Theoreml. If0 or fl-O in the ATS W, then

idw(R)D(, ) l(e,, eO(R)D(, ) (W(R))*
is the standard enveloping Lie algebra of the LTS (W(R))*. And,
id(R)D(,)l(e,, e.)(R)D(, ) is a Lie subalgebra satisfying the
following commutator relations"

[P, ]c, [P, :]c, [, ]c,
where ’=id(R)D(, ) and "=l(el, e0(R)D(, ).

2. Let be a gen. JTS of 2nd order. Now we consider the

(x) andvector space direct sum, of which element is denoted by x
define a triple product on it by
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(6)

[eaL(x, y)+aL(x, y) aL(x, y) + flL(x, y)/-
where a, fl, (= ! 1) are the elements of the base field .

By straightforward calculations we have
Theorem 2. Let be a gen. JTS of 2nd order, then is a

gen. JTS of 2nd order relative to the product defined above.
The gen. JTS of 2nd order obtained in Theorem 2 is denoted by

(),. For =1, if we define a linear mapping f of W@ into

(x) we have the following()+ by f(e,x+ex)= x
Theorem 3. W@ is isomorphic to (@)+ as gen. JTS of 2nd

order.
By direct calculations, we see that the product in the induced

LTS (@) is given as follows

(7)
y z [x y z]+[xy z]+ a[x y, z] + fl[x y z]]’

where [xyz] is the product in the LTS *.
Remark 1. If we put =-1 in (6), (@)_ is isomorphic to

J(a, fl, 0) in [2]. Hence Lie algebras can be constructed by (@)_
as in [2].

For an induced LTS *, we consider te vector space direct sum

*@*, of which element is denoted by..x" expres-

sion (7) we obtain

Theorem 4. If in ** we define a triple product by

x y z a[xyz]+a[xyz]+a[xyz]+[xyz]]’
then ** becomes a LTS and is isomorphic to () as LTS.

Remark 2. If we put a=l and fl=0, 1 in the product (8), we
get the LT product defined by Y. Taniguchi (c2. [10]).. K. Yamaguti has defined bilinear orm Yz of a gen. JTS
of 2nd order by

1 Sp[2(R(x y) +R(y, x)) L(x, y) L(y, x)]

where R(x, y)z= {zxy} ([12]). Using this definition, the bilinear forms

r, , and r of W, W@ and() are as follows: r(a, b)=Sp l(a, b),

r(a@x, b@y)=r(a, b)r(x,y) and r x y
respectively.

The Killing orm of LTS * is given as (x, y)=(1/2)Sp[R(x, y)
+R(y, x)], where R(x, y)z= [zxy] ([8]). Then, the Killing orms and
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. of (W(R))* and (),* are as follows: (a(R)x, b(R)y)--,,(a, b)(x, y)

((x) (Y))=2a(x, y)+2fl(x, y)respectively. Thenand...x y we can

see that coincides with and coincides with .
4. From now on, we assume that a, fl#0 and that gen. JTS

of 2nd order and the induced LTS * are non-trivial, i.e. {}#{0}
and [***]#{0}.

For an element X=ex+ey in W, we define he projec-
tions P and P o W onto by P(X)= x and P(X)=y respectively.
And, an involutive automorphism a in W is defined by a(ex
+ey) e x-ey which induces an involutive automorphism in
the LTS (W)*. From the property of the product we have

Lemma 2. Let be an ideal inW(resp. (W)*), then P()
and P() are ideals in (resp. *).

From the property o the projections, we have
Lemma 3. Let be an a-stable ideal inW or (W)*, then

e P()+e P().
Lemma 4. Let be an ideal in W@ or (W@)*. If (resp.

*) is simple, then ={0} or P()=P()= (resp. *).
Using the property of a-stable ideals, we have
Lemma 5. Let (resp. *) be simple, then
( ) W@ (resp. (W@)*) is simple,

or
(ii) W@ (resp. (W@)*) is a direct sum of two isomorphic

simple ideals in W@ (resp. (W@)*).
Theorem 5. ( ) Let be an ideal in gen. JTS of 2nd order.

Then
(W, )=idw@D(, ) l(e, e)@D(, ) (W@)*

is an ideal in the Lie algebra (W, ).
(ii) Let be an ideal in the induced LTS *. Then

(W, )=idw@D(, ) l(e, e)@D(, ) (W@)*
is an ideal in the Lie algebra (W, ).

Corollary. If (W, ) is simple, then and * are simple.
5. Examples. In this section we assume that the characteristic

of is 0 and is an algebraically closed field.
(i) Let be an n-dimensional vector space with a symmetric

bilinear form (,). Then {xyz} (y, z)x is a gen. Jordan triple prod-
uct of 2nd order in . Since the induced LT product [xyz] equals to
2(y, z)x-2(z, x)y, D(, )={D: (Dx, y)+(x, Dy)=0}. If the form
(,) is non-degenerate, then dimD(, )=(1/2)(n-n) and (W@)*
is simple. Hence dim (W, )=n+n and (W, )B,B,(n=21) or

D,D,(n=21+l).
(ii) The quaternion algebra Q becomes a gen. JTS of 2nd order
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relative to a triple product {xyz} x(yz) + z(yx)- y(’z) (c. [1,4]). By
direct calculations, we see that dimD(Q, Q)=3 and (W(R)Q)* is simple.
Hence dim (R)W, Q)= 14 and (R)(W, Q) is o type G.

(iii) The Cayley algebra becomes gen. JTS of 2nd order
relative to the same triple product as in (ii). By straightforward
clculations, we see that dimD(, )=7 and (W(R))* is simple. Hence
dim (R)(W, )--30 and (R)(W, )-AA-DD.
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