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0. Introduction. Let a(x, ) be a real valued symbol function
belonging to the class S,0(R) of HSrmander [6], that is, for any pair
of multi-indices a and , we have

sup (1 +I]0II-’/IDD a(x, )] oo,

where we used usual multi-index notation. Let a(x, D) denote its
Weyl quantization, which is defined as

a(x, D)u(x)= a x+ e,_.,u(y) dy d
Rn Rn 2

for any u e g(R). Cf. Weyl [11], Voros [10] and HSrmander [8].
Since a(x, $) is real valued, the operator a’(x, D) is essentially

self-adjoint in the Hilbert space L(R0. We shall denote scalar prod-
uct and norm in L(R) by (,) and Ii, respectively. The main result
in this note is the following

Theorem. Let a(x, ) be as above. Let be an arbitrary small
positive number. Using the symbol function a(x, ), we can construct
three bounded linear operators +, - and R in L(R0 with the follow-
ing properties

1) z and - are non-negative symmetric operators.
2) There exists a positive constant C such that we have

Re(+a(x, D)u, u)-Cllutt,
and

-Re(-a’(x, D)u, u)_
for any u e

3) =/+-=I+R,
where R satisfies the estimate

All these operators , =- and R can be written as integral oper-
ators.

I a(x, )_0 or any (x, ) e R, our construction shows that z/ =I
and -=R=0. Thus, in this case our theorem is nothing but the
celebrated sharp Grding inequality. In this case, sharper results are
known in [9], [8] and in [4]. However, if a(x, ) changes sign, very
little ws done (cf. [5]) and our result seems new.

It is not clear to the author whether the above result has relation-
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ship to a deeper problem"
"To what extent can one know spectral properties of a’(x, D)

from local behaviours of its symbol function a(x, ) ?"
Acknowledgements. The problem treated in this note was pro-

posed by L. Nirenberg. The author wishes to express his sincere
gratitude to Prof. L. Nirenberg for that.

1. MicroAocalization. We use a modification of the ingenious
partition of unity used by Beals-Fefferman [2]. We partition R R
into rectangles Q=Q Q, ] 1, 2, ., obtained by partitioning the
x-space into cubes of diameter 1 and partitioning the S-space into cubes
of the diameter satisfying
(1.1) 16-(N+[[) diam. Q8-(N+[[)
or all (x, $) e Q. Here N is a large positive number to be fixed later.
For any rO, rQ denotes the rectangle r-homothetic to Q with the
same center as Q.

We retain the rectangle Q which satisfies any one o the following
conditions;
(1.2) a(x, ) has constant sign if (x, ) e 4Q.
(1.3) - a(x,)diam. of Q. for (x, ) e 4Q.

(1.4) (1+)-. 3 a(x, )]>2 diam. of Q for any (x, ) e 4Q.
3x

(1.5) diam. Q(2 N/(N+[[) -1/ for some (x, ) e Q}.
If all these conditions fail or Q, we partition it into 2n congru-

ent subrectangles. We denote the new rectangles {Q}. We retain
those new rectangles which satisfy any of conditions (1.2)-(1.5) with
Q replaced by Q. We subdivide the rest. We continue this process.
On any compact subset of RX R, this process ends after finite number
of steps because of (1.5). Whe all these steps of iterative construc-
tion are complete, we relabel retained rectangles as Q, Q, ..., Q=Q
Q, .... These retained rectangles are a partition of RR into
closed sets with disjoint interiors. Let denote the diameter of Q
and denote the diameter of Q. In the following, we shall denote
by C various positive constants independent of N, , and h.

Proposition 1.1. If 2Q, 2Q, we have

8-,8, and
Lemma 1.2. Let Q, be a rectangle. Then one of the following

cases holds.
( I There exists a positive constant C such that

(1.6) [a(x, )[gCN for any (x, ) e 4Q,.
(II) For any (x, ) e 4Q,, [N/2 and a(x, )0.
(III) For any (x, ) e 4Q,, [$[N/2 and a(x, )0.
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(IV) For any

( V ) For any

(x, ) e 4Q,,

(x, ) e 4Q,

I]_N/2 and I’ x

a(x, )1 >-"and

a(x,

Let {(x, )} be non-negative C unctions such that , (X, )
----1 and suppc5/4Q. Let be a non-negative C unction such
that (x, )=1 on ll/8Q and (x, )=0 outside 3/2Q. We put
a(x, )=a(x, )(x, ). We have the ollowing estimates.

Proposition 1.3. For any multi-indices and fl, we have
(1.7) IDD (x, )]C.7
(1.8) ]DD a(x, )]C. N* -"- if (x, ) e 4Q.

where fl*=max (1,
If 2N at the center (x, ) of Q, we have
(1.9) [DD a(x, ei-[fl[ for (x, ) e 4Q,.

2. Solutions to the micro.localized problem. In each o cases
(I)-(V) of Lemma 1.2, we can prove

Lemma 2.1. Let 3 e;:h,. Then, for any , we can construct
two symmetric bounded linear operators + and - such that

( ) There exists a positive constant C such that

(ii) There exists a positive constant C such that we have
(2.2) Re(=; a(x, D) (x, D)u, ?(x, D)u)--CNl
(2.3) --Re(; a(x, D) e(x, D)u, (x, D)u)--CN[[(x, D)ull.

+ h,R,, where R, is an(iii) Either , +7 I or , +u;=(x,
operator with [iRl<C and , e Cg(ll/8Q,) with ,(x, $)=1 on 5/4Q,.

Sketch of the proof o[ Lemma 2.1. In the case (I) of Lemma
1.2, we put =; =I and u; =0. Then (2.2) and (2.3) hold.

In the case (II) of Lemma 1.2, we put u =I and u;=0. In the
case (III) of Lemma 1.2, we put =0 and u; =I. In the case (IV)
Lemma 1.2, proof of Lemma 2.1 is rather complicated. We use the
unitary operator S, defined by S,u(x)=7 u(8;(x- x’)) exp i$’. (x x’),
where (x’, $’) is the center of Q,. Then we have

S; a(x, D)S,=a(x, h,D),
here a,(x, $)=a(x’+8,x, $’+,$) and for any

a(x, hD)u(x)= 2h a(x, )e-’-’ u(y) dy d.

We define ?(x, ) and (x, ) in the similar manner and we put
a(x, )=a(x, )(x, ). We put Qo =((x, )
] 1, 2, ..., n}. Then, (x" +x, "+) e rQ if (x, ) e rQo.

Lemma 2.2. Suppc5/4Q0 and supp e 3/2Q0. For any multi-
indices a and fl, we have the estimates;
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IDD a(x, )l_h; C if (x, ) e 4Q0
and

]DD (x, )]+[DTD (x, )_C. for any (x, ) e RxR.
We put b,(x, )=h, a(x, ). In the case of (IV) of Lemma 1.2,

we have ](3/3)b(x, )ll or any (x, $)e 4Q0. This means that the
Hamiltonian vector field of b(x, ) has non-zero projection to the x-
space R. Using this, we can find local (not necessarily homogeneous)
canonical transformation Z such that b. Z(Y, )=V. We can find an
oscillatory integral operator T(h);

( 1 )"ff g(x,)p(x,)e_x.)_.)u(y)dyd,T(h) u(x)=
2zh

where S(x, ) is a generating function of

g(x, )= det S(x,

and p(x, ) is a cutting function (cf. [1]).
Lemma 2.3. For any hO,

T(h)*(b, )(x, hD) hDT(h)* hRt(h).
T(h)T(h)* (p)(x, hD)+ hR(h).

There exists a positive constant C such that
R(h) + R(h) C.

The operator hD=h(1/i)(O/3x) is easily decomposed into positive
part and negative part if we use the projection operators Y(hD);

where *(t)=l for tO and *(t)=O for t<O and -(t)=l-Y’(t).
Although the se {(, OS(z, )/0)10(, )=1} is very small, a bounded
number of such sets cover /0 which contains sup p. hus
can rove

Lemma .4. Ame that (IV) o gemme 1.2 holg. The,

that
(i) 2 are o-eative

positive constant C such that
(ii) Re(;(b)(x, hD)u, u)-C

-Re(;(b)(x, hD)u, u)-C h
(iv) ; +7 =(x, hD)+h (h),

(x, )=1 on 5/4Q0 and supp cll/8Q0.
I we put z;=S S;, we can prove that Lemma 2.4 implies

Lemma 2.1 in the case o (IV) of Lemma 1.2.
To prove Lemma 2.1 ia the case (V) of Lemma 1.2, we use Fourier

transform with a parameter h>0;

Fu(Y)= (12h )" rj --_, e u(x) dx.
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We have
F; b(x, hD) F=p’(y, hD),

where p(y, ])=b,(], --y). Condition (V) implies that
or any (y, ])e 4Q0. Thus we can apply Lemma 2.4 with b replaced
by p. Since F is unitary and the Legendre transform Z" (y, )(],
--y) preserves rQo for any r0, Lemma 2.1 can be proved in the case
(V) of Lemma 1.2.

:. Patching of microlocal solutions. Collecting microlocal
solution ; in Lemma 2.1, we prove our main theorem. We put
(3.1) ==, (x, D); (x, D).

Then, we have
(3.2) +- I+J+J,
where
(3.3)

and
(3.4)

J= {(x. D) ’(x. D) (x. D)-(p:,)(x. D)}

J.=, h (x, D) R, (x, D).

We can prove that
(3.5) IIJ, II-t-IIJ211_C N-1.
Thus we take N so large that C N- and we fix N.
assertion 3) of Theorem. We have
(3.6)

This proves

/ aW(x, D)= (x, D) ; a(x, D) (x, D)+RI+R,
where
(3.7) R= (x, D) =’[(x, D), a’/(x, D)],

(3.8) R.--(x, D) ; /(x, D) (a(x, D)--a(x, D)).
Since Lemma 2.1 holds, we have only to prove that
(3.9) R + R C.
We prove estimates (3.5) and (3.9) by using HSrmander’s theory [8].
To do so we introduce a Riemannian metric on R R.

Definition .1. Let w=(x, )e RnRn. We define a quadratic
orm g. of (t, )eRR,
This is a a-temperate Riemannian metric on RR in the sense of
HSrmander [8].

Lemma .2. There exists a constant CO such that for any
points w=(x, ) and w’=(y, );

g(, r) <C g,(t, r) (1 + gw,(X y, )).
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