21. A Solution to a Problem on the Asymptotic Behavior of Nonexpansive Mappings and Semigroups*)

By Simeon REICH

Department of Mathematics, The University of Southern California, Los Angeles

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1980)

Let C be a closed convex subset of a Banach space $E,T:C\to C$ a nonexpansive $(|Tx-Ty|\leqslant |x-y|)$ for all x and y in C) mapping, and $S:[0,\infty)\times C\to C$ a nonexpansive nonlinear semigroup. Assume that the norm of E is uniformly Gâteaux differentiable (UG), and that the norm of its dual E^* is Fréchet differentiable (F). It was shown in [5] and [7] that if E is a (sunny) nonexpansive retract of E, then the strong $\lim_{n\to\infty} T^nx/n$ and $\lim_{t\to\infty} S(t)x/t$ exist for each x in E. However, the question whether this is true for arbitrary closed convex subsets of E has remained open [6, Problem 7] and [8, Problem 4]. The purpose of this note is to present a positive solution to this problem (Theorems 2 and 3). Theorem 1 provides a (partial) positive answer to a question of Pazy [4, p. 239].

Recall that a subset A of $E \times E$ with domain D(A) and range R(A) is said to be accretive if $|x_1-x_2| \leq |x_1-x_2+r(y_1-y_2)|$ for all $[x_i,y_i] \in A$, i=1,2, and r>0. The resolvent $J_r: R(I+rA) \to D(A)$ and the Yosida approximation $A_r: R(I+rA) \to R(A)$ are defined by $J_r = (I+rA)^{-1}$ and $A_r = (I-J_r)/r$ respectively. We denote the closure of a subset D of E by cl(D) and its closed convex hull by clco(D). The distance between a point x in E and D is denoted by d(x,D). We shall say that D has the minimum property [4] if d(0,clco(D)) = d(0,D). Let J denote the duality map from E to E^* .

Theorem 1. Let E be a Banach space with a uniformly Gâteaux differentiable norm, and let $A \subset E \times E$ be an accretive operator. If $R(I+rA) \supset cl(D(A))$ for all r>0, then cl(R(A)) has the minimum property.

Proof. Let $x \in cl(D(A))$, $z \in Ay$, and t > 0. Since A is accretive, $(z-A_tx,J((y-J_tx)/t)) \geqslant 0$ for all t. Let a subset of $j_t=J((y-J_tx/t))$ converge weak-star to j as $t\to\infty$. Since we always have $\lim_{t\to\infty} |J_tx/t| = d(0,R(A)) = d$ (see the proof of [9, Proposition 5.2]), we see that $|j| \leqslant \liminf_{t\to\infty} |j_t| = d$. We also have $\lim_{t\to\infty} (A_tx,J((y-J_tx)/t)) = d^2$. Therefore $(z,j) \geqslant d^2$. Since E is (UG), j does not depend on y and z. Thus

^{*)} Partially supported by the National Science Foundation.

 $(w,j)\geqslant d^2$ for all w in clco(R(A)). Hence $|w|d\geqslant |w||j|\geqslant (w,j)\geqslant d^2$, and the result follows.

There are examples that show that Theorem 1 is not true for all Banach spaces (even if A is m-accretive), nor is it true for accretive operators that do not satisfy the range condition (even if E is Hilbert). In the setting of this theorem, cl(R(A)) is not convex in general, even if E is Hilbert. (It is convex if E is E is E is E is Hilbert. (It is convex if E is E is

Theorem 2. Let E be a Banach space, $A \subset E \times E$ an accretive operator that satisfies $R(I+rA) \supset cl(D(A))$ for all r>0, S the semigroup generated by -A, and J_t the resolvent of A. If E is (UG) and E^* is (F), then for each x in cl(D(A)), $\lim_{t\to\infty} S(t)x/t=\lim_{t\to\infty} J_tx/t=-v$, where v is the point of least norm in cl(R(A)).

Proof. Let d=d(0,R(A))=d(0,clco(R(A))) by Theorem 1. We always have $\limsup_{t\to\infty}|x-S(t)x|/t\leqslant d$ and $\lim_{t\to\infty}|J_tx/t|=d$. Since (x-S(t)x)/t belongs to clco(R(A)), we also have $|(x-S(t)x)/t|\geqslant d$ for all t. Thus $\lim_{t\to\infty}|(x-S(t)x)/t|=d$. Since E^* is (F), every sequence $\{x_n\}$ in a convex subset K such that $\lim_{n\to\infty}|x_n|=d(0,K)$ converges. Hence the result.

If E is (UG), reflexive, and strictly convex, then S(t)x/t and J_tx/t converge weakly as $t\to\infty$. Several known results can now be improved. For example, [1, Corollary 4.3] is now seen to be true for all closed convex C.

Theorem 3. Let C be a closed convex subset of a Banach space E, and let $T: C \rightarrow C$ be nonexpansive. Let the sequence $\{x_n: n=0, 1, 2, \cdots\}$ be defined by $x_{n+1} = c_n T x_n + (1-c_n) x_n$, where $x_0 \in C$ and $\{c_n\}$ is a real sequence such that $0 < c_n \le 1$ and $a_n = \sum_{i=0}^n c_i \xrightarrow[n\to\infty]{} \infty$. If E is (UG) and E* is (F), then the strong $\lim_{n\to\infty} x_{n+1}/a_n = -v$, where v is the point of least norm in cl(R(I-T)).

Proof. We can apply Theorem 1 and the proof of Theorem 2 because I-T is accretive and satisfies the range condition.

It follows that [1, Corollary 2.3] is true for all closed convex C. Kohlberg and Neyman [3] have established Theorem 3 for uniformly convex E in case $c_n=1$ for all n. We have modified their idea to show that Theorem 1 is true if E is uniformly convex and smooth (equivalently, E is (G) and E^* is (UF)), and that Theorems 2 and 3 are valid if E is assumed to be uniformly convex. (See also [2] for other results of this type.)

It is expected that full details of these and other results (e.g. on infinite products of resolvents) will appear elsewhere.

References

- [1] J. B. Baillon, R. E. Bruck, and S. Reich: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math., 4, 1-9 (1978).
- [2] T. Bewley and E. Kohlberg: The asymptotic theory of stochastic games. Math. Operations Research, 1, 197-208 (1976).
- [3] E. Kohlberg and A. Neyman: Personal communication (1979).
- [4] A. Pazy: Asymptotic behavior of contractions in Hilbert space. Israel J. Math., 9, 235-240 (1971).
- [5] S. Reich: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl., 44, 57-70 (1973).
- [6] —: Some fixed point problems. Atti Accad. Naz. Lincei, 57, 194-198 (1974).
- [7] —: Asymptotic behavior of semigroups of nonlinear contractions in Banach spaces. J. Math. Anal. Appl., 53, 277-290 (1976).
- [8] —: Some problems in nonlinear functional analysis. The Altgeld Book 1975/6, University of Illinois Functional Analysis Seminar. pp. xii. 1xii. 18.
- [9] —: Product formulas, nonlinear semigroups, and accretive operators.

 J. Funct. Anal. (to appear).