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8. On the Cohomology of Q-Divisors
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In this paper we shall define the cohomology groups of divisors
with coefficients in the field of rational numbers @ and prove the
Kodaira vanishing theorem in this case. As an application we shall
prove the invariance of the logarithmic plurigenera P,(X) under defor-
mations when X is a surface of logarithmic general type. This paper
is based on the idea of Miyaoka [4].

1. Let X be a non-singular projective algebraic variety defined
over the complex number field C. A @Q-divisor D is an element of
Div(X)®,Q. If D=3d,D,, where the d,c @ and the D, are prime
divisors on X, we write [D]=>" [d,]D,, where [ ] denotes the integral
part. For such a D we know by Bloch and Gieseker that there is a
finite Galois cover =: X—X with X non-singular and projective such
that the pull back z*D is integral, i.e., z*D e Div(X). We define
HYX, D)=H4X, n*D)¢, where G=Gal (X/X). This is well defined be-
cause of

Lemma 1. Let f: XY be a finite Galois cover of non-singular
projective algebraic varieties and let D € Div(Y). Then

H{Y,D)=>H'X, f*D)¢
by the canonical homomorphism, where G=Gal (X/Y).

Proof. Note that our characteristic is zero. Since the functor
A—A¢ is exact for divisible G-modules, we have H (X, f*D)*=H'X,
(f*D)%), and the latter is isomorphic to H«(Y, D). Q.E.D.

By the same reason we get

Lemma 2. HYX, D)=H'X, [D)).

Theorem 1. Let H be an ample Q-divisor on X, that is, some
integral multiple nH is ample on X. Then

Hi(X,[—HD=0  fori<dimX.

Proof. Take n: X—X as above. By the lemmas H*X,[—H])
=H{(X, —H)=H¥X, —z*H)¢. Since n*H is ample on X, we have
H«X, —a*H)=0 for i<dim X by the usual Kodaira vanishing theorem.

Q.E.D.

2. For the terminology see [1] and [2].

Theorem 2. Let X be a non-singular algebraic surface and let n
be a positive integer. Then the logarithmic pluri-genera P,(X) are
nmvariant under compactifiable deformations.
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Proof. In [2] the theorem was already proved except in case #(X)
=2. Let (X,,, D,,) be the minimal model of X. By Theorem 1, H«(X,,
[-wK,+D,)1=0 for ¢=0 and 1. Put D, ,;=—[—nD,] and D=D,.
Note that D is a reduced divisor of normal crossing on X,,. We have
that dim H%X,, (n+DK, +Dp)=xX,, (n+1DK,+Dy), and there is
an exact sequence:
0—>HY(X,p, (14 DK, + D) H(X,, (n+ DK+ Dyt D)
—H(D, (n+1DK,,+ D3+ D |,)—0.
Since D, <D ,<nD and D—D,, is negative definite, the dimension
of the middle term is P,,,(X). On the other hand,
dim H°(D, (n+DK,,+D,;+D |,)
=x(D, (n+1)K,,+ D3+ D |p) —dim H(D, —nK,,— D, |,).
A section of (—nK,,— D, |,) has a support on a tree of rational curves,
where dim H° depends only on the degree, or on an isolated elliptic
curve or on a cycle of rational curves, where D,, and D are the same.
Thus, P,,,(X) is deformation invariant. The invariance of P,(X)
follows from the theory of mixed Hodge structures (cf. [1]).
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