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78. On the Hessian of the Square of the Distance
on a Manifold with a Pole
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(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of
papers by Greene-Wu. In particular, the characterization of C* in
terms of geometric conditions is one of the most interesting problems.
In the case of a simply-connected complete Kdhler manifold of non-
positive curvature this problem has been solved by Siu-Yau [2] and
Greene-Wu [ 1] (Theorem J). Concerning these results Wu has pro-
posed some open problems in[4Jand[5]. In this note we shall prove
theorems related to his propositions. The author would like to thank
Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping ¢: N—M between Riemannian manifolds
is called a quasi-isometry iff ¢ is a diffeomorphism and there exist
positive constants p and v such that for each tangent vector X on N,

1X =160l = | Xy
We recall that (M, o) is called a manifold with a pole iff M is a Rieman-
nian manifold and the exponential mapping at oe M is a global
diffeomorphism. Let (M, 0) be a manifold with a pole. The distance
function from the pole o will be denoted by » so that #* is a smooth
function on M. The first theorem in question is the following

Theorem 1. Let (M, 0) be a manifold with a pole. Suppose there
exists a continuous non-negative function «(t) on [0, co) such that:

M |1/2D7—g|<e(y,

@) &= j : )/ t)dt< co.

Then exp: T,(M)—M is a quasi-isometry satisfying
exp (c,) 7 |VI=|exp, (V)|Zexp ()| V|
for any tangent vector V at any point in T ,(M).

In (1) above, D** denotes the Hessian of the smooth function #?
on M. Moreover inequality (1) means the following: If xe M and
X e T, (M) is a unit vector, then

SDTEX) 1 Zer(@).

Remark. It follows from the above theorem that if (M, o) is a
manifold with a pole and (1/2)D**=g¢g on M then M is isometric to a
Euclidian space. This is a weak form of a theorem by H. W. Wissner



No. 7] Hessian of the Square of the Distance 333

[3]1: If M is a connected complete Riemannian manifold and f is a
smooth function on M whose Hessian is equal to the metric on M, then
M is isometric to a Euclidian space.

Remark. Theorem C in [ 1] shows the following: Let (M, 0) be
a manifold with a pole. If there exist continuous functions K, k : [0, o)
—[0, o) such that:

1) —k(r)<radial curvature<K(r),

@) f : tR(t)dt<1,

®) f " th(B)dt< oo,

then exp:T,(M)—M is a quasi-isometry. On the other hand
Theorm in [ 5] says that under the same assumption as in Theorem C
in [ 1] there exists a positive smooth function ¢(Z) on [0, co) such that
e(t)—0 as t—oo and the conditions (1) and (2) in Theorem 1 above are
satisfied. Therefore Theorem C in [ 1] follows from Theorem in [51]
and Theorem 1.

2. Let (M, 0) be a manifold with a pole and » the distance func-
tion from o and 8 the radial vector field, so that 3 is the gradient of .
We define a vector field H by H=7d. Then a straight calculation
shows that

H =% grad (1%),

and particularly H is a smooth vector field on M. We denote by (¢,)
the one parameter transformation group of M generated by the vector
field H. We have the following

Lemma 1. If the Lie derivative by the vector field H is denoted
by L, then we have

D¥i=_L,g.

Proof. LetX andY bevector fieldson M. Since H=1/2grad (1),
DX, Y)=X(Y () -V Y (r)=X(grad(r),Y)—(grad(r’),V,Y)=2(V  H,
Y). On the other hand the torsion of the Riemannian connection F is
free, thus L,9X,Y)=HX,Y)—(H,X],Y)—-(X,[H,Y)=UF,H,Y)
+(X,V,H). Since D** is symmetric, (V,H, Y)=Q1/2)D*X,Y)
=1/2D7*(Y,X)=F,H,X). Hence D*(X,Y)=_Lyg.

Lemma 2. For any vector v in T,(M), we have

¢,(exp v) =exp (e'v).

Proof. Let v be a unit vector in T,(M) and y(s)=exp (sv). Then
(d/dt)(@.(7())),=H,, 5, =1(@.(1(8))0;,- Now we define @(0, s) by the
following: ¢,((8))=7(@(, s)), so that r(¢,(7(8))=D(t,s) and (¢, s)=s.
Then (d/dt)(¢,(y(s),=((0/3t)D(¢, $)).0,00:,y a@nd hence (3/30)D(¢, s)
=@(t,s). Since we have 9(0,s)=s, O(t,s)=se’. Therefore ¢,(y(s))
=7y(se), i.e., ¢,(exp sv)=exp (e'sv).
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Let y={exp tv:t=0} be a ray from o (v e T (M), |v|=1) and V a
vector in T,(T,(M)) orthogonal to v. Regarding sV a vector in
T.(T (M) in the usual way, we define a vector field along y by

Zexp(s'v) = (eXp*)sv(SV)°
Clearly Z is a Jacobi field along the ray y and Z is orthogonal to y at
every point. Furthermore any Jacobi field along y which vanishes at
o and is orthogonal to y can be obtained in this way. The Jacobi field
Z is called the Jacobi field along y defined by V.

Lemma 3. Let Z be the Jacobi field along y defined by V and
Se@)=\|Z,|(xey). Then we have

Q) Z is (¢)-tnvariant and [H, Z1=0,

@ lim,., f(»=0 and lim,_, f(r)/r=|V]|,

@ A/2)Lr9g(Z, Z)=rf(r)f (7).

Proof. Foranywue T, (M), ¢,(expu)=exp (e‘u). Hence (¢,)(Zoxp s0))
=4+ (exP ) (8V)) = (XD ) c150(€"8V) =Z o (ct50y = Z g, exp 50y @0 then Z is
(¢)-invariant. This shows (1). The first limit of (2) is obvious.
J@) /r=|(expy),,aV)|/r=|V]|(exp,), e V)|/r|V)—|V| as r—0, this
shows the second limit of (2). Since we have [H,Z]=0, (3) can be
obtained as follows;

1 L 1
1 L4002, 2= L H(ZD) (W, 21, 2) = 1202])
=%r(f(¢)2)’=¢f(r)f’(r).

3. Proof of Theorem 1. Let (M, 0) be a manifold with a pole
which satisfies conditions in Theorem 1. Namely, we have a non-
negative continuous function e(¢) on [0, o) satisfying the conditions
(1) and (2). Let Z be a Jacobi field along a ray y defined by V and
S@r(@)=|Z,| (xey). Then the condition (1) in Theorem 1 implies
lrf) f/(r)— f@)|Ze(r) f(r)* since (1/2).Ly9(Z,Z)=7f(r)f(r). There-
fore we have

_ ) 10— @) _ o)
r o f@)r o7
Since the mid-term equals (f(»)/rY /(f(r)/r), we have

—j e(t)/t dt<log f(t) |z§j: «(t)/t dt.

Since
lim f()/r=|V| and e,,=j°° «(8) /¢ dt,
-0 0
log |V|—e¢,Zlog f(r)/r<Llog |V]+e,,
and hence
|[V]exp (—e) < f(r)/r<|V]exp (c,),
that is,

[7V] exp (—e&)) <|(exp,),,(rV)|<[|rV]exp ().
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Therefore for any w in T,(M) and W in T,(T,(M)) orthogonal to w,
[ W] exp (—e,) <|(exp,) (W) || W]exp (e,).

On the other hand, the restriction of exp to the ray y is an isometry.
Hence for any v € M and any V e T (T,(M)), the same inequality holds.
This completes the proof.

Remark. If (M, 0) is a manifold with a pole, then there exists a
non-negative continuous function () on [0, co) such that:

1) |@/2)Dr*—g|<Ze(r)g around o.

(2) e(®)/t is bounded around ¢=0.
Therefore we can prove the following: If there exists a non-negative
continuous function «(¢) satisfying (1) in Theorem 1 and
r e(®)/t dt << oo for some ¢>0,

then exp: T',(M)—M is a quasi-isometry.

4. A manifold (M, o) with a pole is called a model iff the linear
isotropy group of isometries at o is the full orthogonal group. If
(M, o) is a model then the metric g of (M, o) relative to geodesic polar
coordinates centered at o assumes the form

g=dr*+ f(r)*de?,
where f is a smooth function on [0, o) satisfying

(1) sf>0o0n [0, )

@ FO=0, f'(O)=1.

In this case the radial curvature r becomes a function of distance
function r and is called the radial curvature function. Then the Jacobi

equation is

J'@=—k@®S@).
We have the following propositions on a model with respect to the con-
ditions of Theorem 1.

Proposition 1. Let (M, 0) be a model with a non-positive radial
curvature function —k, i.e., k=0. We define the function e: [0, co)
—R by «(t)=Q1/2)D(X, X)—1, where X e T (M) with r(x)=t, |X|=1
and X is orthogonal to 3,. Then «(t)=0 and the following conditions
are equivalent :

(A) exp:T,(M)—M is a quasi-isometry.

(B) There is some constant p=1 such that r< f(r) <yr.

(C) There is some constant n=1 such that 1< f/(r) <y.

(D) j : sh(s)ds < co.

E) j: e(s)/s ds< oo.

The equivalence of the first four conditions was proved by Greene-
Wu [1] (Lemma 4.5), the implication of (D) to (E) was obtained by
Wu [ 5] and Theorem 1 of this note says that (E) implies (A). Hence
all conditions are equivalent.
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Similarly we can show the following proposition for the case of
non-negative curvature.

Proposition 2. Let (M, 0) be a model with a non-negative curva-
ture function K, i.e., K=0. We define the function ¢: [0, co)—R by
e®)=1—-Q1/2) DX, X), where X ¢ T (M) with r(x)=t, | X|=1 and X
18 orthogonal to 3,. Then «(t)=0 and the following conditions are
equivalent :

(A) exp:T,(M)—M is a quasi-isometry.

(B) There is a constant 5, 0<y<1, such that pr<f(r)<r.

(C) There is a constant 5, 0<p<1, such that < f'(r)<1.

(D) r sk(s)ds<1.

(B) f &(s)/s ds < co.

5. We shall show the second theorem of this note which resembles
the converse when the radial curvature is non-positive. Let v be a
unit vector in T, (M) and V a vector in T,(T,(M)) orthogonal to » and
Z the Jacobi field along y={exp tv(t=0)} defined by V. We define
k, (1) and ¢, ,(t) as follows:
&, -(t)=the radial curvature of the plane spanned
by @ and Z at exp tv,
e, (D) =I71|?(%Dzw(z, Z)—|Z|2) at exp tv.
Using this notation we shall prove the following
Theorem 2. Let (M,0) be a manifold with a pole whose radial
curvature is non-positive. Suppose exp: T (M)—M is a quasi-isometry.
Then for any Jacobi field Z along a ray y defined by V,
M) 0=, (),

@)j}ﬂwuw<m,

) ogf b, ()t dE< oo,

Proof. Since the radial curvature is non-positive, we have that
|VI<lexp, (V)| for any Ve T (T(M)) (v e T,(M).
Therefore there exists a positive constant =1 such that
|VI<|exp, MN|=9|V|  for any Ve T (T (M) (ve T,(M).

Let f(r(x)=|Z,| (xey). Thus if x=4¢,(expv), then r(x)=7r(4.(exp v))
=r(exp ev)=¢'. Hence [f(r(x)=|Z,=|(exp,)..(ev)] and so [e'V]
=S@@)=nle'V|, that is,

@ r\VISSfm=yr|Vi.
On the other hand, since Z is a Jacobi field, Z satisfies the Jacobi
equation along 7, that is,

ViZ 4+ R(Z,0)0=0 along 7.
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Thus 0=(3Z,Z)+«, ,(r)|Z]. Moreover we have (V3Z,Z)=0(V,Z,Z)
—|V,ZF=Q/2)(f(r)’—|V,Z]. Since the parallel displacement by I is
an isometry, |V,Z|=|0|Z||=|f'(r)]. Therefore we have (1/2)(f(r)»”
— (')’ = —«, ,(r) f(r)*, and hence

B S ==k, 1) (7).
Since «,,,(r)<0, f(r) is an increasing convex function. Moreover we
claim

© |VI=rm=y|V|]
In fact, f7(0)=|V| by Lemma 3 (2). Thus |V|< f(r). Suppose there
exists »,>0 such that f’(r,))>7|V|. Take a small positive ¢>0 such
that f’(r,)>»|V|+e. Since f’(r) is an increasing function, f’(r) >y |V|
4+e(r=r,). Thus f()—fr)>0|V|+e(r—r,). If r is sufficiently
large, inequality (4) is contradicted. Therefore we have the inequality
(6). Now we can show the inequality (1) as follows:

s )= (S0, D) —128) = L H(Z) -1

ZF \2 1Z|
=L e = r =G @ Y )@ ).
J)

Since f(r) is an increasing convex function and f(0)=0, f(r)/r is an
increasing function and hence ¢(»)=0. Thus we have

j: e, ,(0)/t dt=log f(r)/r|; <log 5| V|—log |V|=log < co.
This shows (2). By integrating the inequality (5) we have f'(r)— f/(0)
;J: —r, () f(®)dt. Since f(0)=|V| and f@)=r|V|, f —k, (Ot dt

éf — £, T O/ VDAZ /| VD) —|V)<p—1<co. The proof is
completed.
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