53. Perturbation of Domains and Green Kernels of Heat Equations. III

By Shin Ozawa

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1979)

§ 1. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary γ . Let $\rho(x)$ be a smooth function on γ and ν_x be the exterior unit normal vector at $x \in \gamma$. For sufficiently small $\epsilon \geq 0$, let Ω_{ϵ} be the bounded domain whose boundary γ_{ϵ} is defined by

$$\gamma_s = \{x + \varepsilon \rho(x) \nu_x; x \in \gamma\}.$$

Let $G_{\epsilon}(x, y)$ be the Green's function of the Dirichlet boundary value problem of the Laplacian on Ω_{ϵ} . We abbreviate $G_{0}(x, y)$ as G(x, y). Put

$$\delta^k G(x,y) = \frac{\partial^k}{\partial \varepsilon^k} G_{\epsilon}(x,y)|_{\epsilon=0}$$
 for $k=1,2$.

Put

$$abla_z a(z) \cdot
abla_z b(z) = \sum_{j=1}^n \frac{\partial a}{\partial z_j}(z) \frac{\partial b}{\partial z_j}(z)$$
 for any $a(z)$, $b(z) \in \mathcal{C}^{\infty}(\Omega)$.

By $H_1(z)$ we denote the first mean curvature of γ at z. Then, Garabedian-Schiffer [1] proved the following:

(1.1)
$$\begin{split} \delta^2 G(x,y) &= -\int_\tau \frac{\partial G(x,z)}{\partial \nu_z} \frac{\partial G(y,z)}{\partial \nu_z} (n-1) H_1(z) \rho(z)^2 d\sigma_z \\ &+ 2 \int_{\mathcal{Q}} \mathcal{V}_z \delta^1 G(x,z) \cdot \mathcal{V}_z \delta^1 G(y,z) dz. \end{split}$$

Here $\partial/\partial\nu_z$ denotes the exterior normal derivative with respect to z and $d\sigma_z$ denotes the surface element of γ .

Let $U_{\epsilon}(x, y, t)$ denote the fundamental solution of the heat equation with the Dirichlet boundary condition on γ_{ϵ} . Put

$$\delta^k U(x,y,t) = \frac{\partial^k}{\partial \varepsilon^k} U_{\epsilon}(x,y,t) |_{\epsilon=0}$$

for k=1,2. We abbreviate $\delta^{\scriptscriptstyle 1}U(x,y,t)$ as $\delta U(x,y,t)$. In [2] and [3] the author gave explicit representation of $\delta U(x,y,t)$, that is

(1.2)
$$\delta U(x,y,t) = \int_0^t d\tau \int_{\tau} \frac{\partial U(x,z,t-\tau)}{\partial \nu_z} \frac{\partial U(y,z,\tau)}{\partial \nu_z} \rho(z) d\sigma_z.$$

We can prove the following

Theorem 1. For $x, y \in \Omega$, t > 0

$$\delta^2 U(x,y,t)$$

$$(1.3) = -\int_0^t d\tau \int_{\tau} \frac{\partial U(x,z,t-\tau)}{\partial \nu_z} \frac{\partial U(y,z,\tau)}{\partial \nu_z} (n-1) H_1(z) \rho(z)^2 d\sigma_z$$

$$+2\int_0^t d\tau \int_\tau \frac{\partial (\delta U)(x,z,t-\tau)}{\partial \nu_z} \frac{\partial U(y,z,\tau)}{\partial \nu_z} \rho(z) d\sigma_z.$$

By (1.2) we have the following properties of $\delta U(x, y, t)$.

$$(1.4) \begin{cases} (\partial_t - \mathcal{A}_x) \delta U(x, y, t) = 0 & x, y \in \Omega, t > 0 \\ \delta U(x, y, t) = (\partial/\partial \nu_y) U(x, y, t) \rho(y) & y \in \gamma, x \in \Omega, t > 0 \\ \lim_{t \to +0} \delta U(x, y, t) = 0 & x, y \in \Omega. \end{cases}$$

Hence the second term of the right hand side of (1.2) can be represented by

 $2\int_{0}^{t}d\tau\int_{0}V_{z}\delta U(x,z,t-\tau)\cdot V_{z}\delta U(y,z,\tau)dz.$

Let $T_{r}(t\,;\,\varepsilon)$ denote the trace of $U_{\epsilon}(x,y,t)$ on \varOmega_{ϵ} which is defined by

$$T_r(t; \varepsilon) = \int_{g_{\varepsilon}} U_{\varepsilon}(x, x, t) dx.$$

Put $\delta^k T_r(t) = (\partial^k/\partial \varepsilon^k) T_r(t; \varepsilon)|_{\varepsilon=0}$. We abbreviate $\delta^1 T_r(t)$ as $\delta T_r(t)$.

Let g(t) and h(t) be functions on $(0, \infty)$. If $\lim_{t\to +0} t^p(g(t)-h(t))=0$ for any $p=1, 2, \cdots$, then we write $g(t) \simeq h(t)$.

We can prove the following

Theorem 2. For any fixed t>0, $\delta^2T_r(t)$ exists and satisfies

$$\delta^2 T_r(t) \simeq \int_{\mathcal{Q}} \delta^2 U(x, x, t) dx.$$

Here the integral

$$\int_{\Omega} \delta^2 U(x,x,t) dx$$

means the improper integral in the following sense. Let $\{\Omega_j\}_{j=1}^{\infty}$ be an increasing family of subdomains of Ω such that for any $j=1,2,\cdots$. $\overline{\Omega}_j$ is contained in Ω_{j+1} as a compact subset and such that $\partial\Omega_j$ is diffeomorphic to γ and $\bigcup_{j=1}^{\infty}\Omega_j=\Omega$. Then

$$\int_{a} \delta^{2} U(x, x, t) dx = \lim_{j \to \infty} \int_{a_{j}} \delta^{2} U(x, x, t) dx.$$

§ 2. Outline of proof. In this section, we give an outline of proof of Theorem 1 and give a proposition concerning $\delta U(x, x, t)$ which is a step to prove Theorem 2.

By the definition, we have

$$\delta^2 U(x, y, t) = \frac{\partial}{\partial \varepsilon} \delta U_{\varepsilon}(x, y, t) |_{\varepsilon=0},$$

so we need an explicit representation of $\delta U_{\epsilon}(x, y, t)$. Fix ϵ . And let $\tilde{\epsilon}$ be small real number, then there exists a function $\rho_{\epsilon}(\tilde{\epsilon}, x)$ such that $\gamma_{\epsilon+\tilde{\epsilon}}$ can be represented uniquely as

$$\gamma_{\epsilon+\tilde{\epsilon}} = \{x + \tilde{\epsilon} \rho_{\epsilon}(\tilde{\epsilon}, x) \nu_x^{\epsilon}; x \in \gamma_{\epsilon}\},$$

where ν_x^{ϵ} is the exterior unit normal vector at $x \in \gamma_{\epsilon}$. Define $\rho_{\epsilon}(x)$ by $\rho_{\epsilon}(x) = \lim_{\epsilon \to 0} \rho_{\epsilon}(\tilde{\epsilon}, x)$. Then, we have

$$\delta U_{\epsilon}(x,y,t) = \int_{0}^{t} d\tau \int_{\tau_{\epsilon}} \frac{\partial U_{\epsilon}(x,z,t-\tau)}{\partial \nu_{z}^{\epsilon}} \; \frac{\partial U_{\epsilon}(y,z,\tau)}{\partial \nu_{z}^{\epsilon}} \rho_{\epsilon}(z) d\sigma_{z}^{\epsilon},$$

for $x, y \in \Omega$, t > 0. See [2].

We have the following

Lemma 3. Let $g(\varepsilon, z) = f(\varepsilon, z + \varepsilon \rho(z)\nu_z)$ be a function of $(\varepsilon, z) \in \{(-\varepsilon_0, \varepsilon_0) \times \gamma\},$

then

(2.1)
$$\begin{aligned} \frac{\partial}{\partial \varepsilon} \int_{\tau_{\varepsilon}} f(\varepsilon, w) d\sigma_{w}^{\varepsilon} \\ = \int_{\tau} f(0, z) (n-1) H_{1}(z) \rho(z) d\sigma_{z} + \int_{\tau} \frac{\partial g}{\partial \varepsilon} (\varepsilon, z) |_{\varepsilon=0} d\sigma_{z}. \end{aligned}$$

Put $\gamma^+ = \{x \in \gamma; \rho(x) \ge 0\}$ and $\gamma^- = \gamma \setminus \gamma^+$. For sufficiently small ε , we put $\gamma_{\varepsilon}^+ = \{x + \varepsilon \rho(x)\nu_x; x \in \gamma^+\}$ and $\gamma_{\varepsilon}^- = \gamma_{\varepsilon} \setminus \gamma_{\varepsilon}^+$. Then, we have

$$(2.2) \frac{\partial}{\partial \varepsilon} \left(\int_{0}^{t} d\tau \int_{\tau_{\varepsilon}^{+}}^{t} \frac{\partial U_{\varepsilon}(x, z, t - \tau)}{\nu_{z}^{\varepsilon}} \frac{\partial U_{\varepsilon}(y, z, \tau)}{\partial \nu_{z}^{\varepsilon}} \rho_{\varepsilon}(z) d\sigma_{z}^{\varepsilon} \right) \Big|_{\varepsilon = 0}$$

$$= \int_{0}^{t} d\tau \int_{\tau^{+}}^{t} \frac{\partial U(x, z, t - \tau)}{\partial \nu_{z}} \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} (n - 1) H_{1}(z) \rho(z)^{2} d\sigma_{z}$$

$$+ \int_{0}^{t} d\tau \int_{\tau^{+}}^{t} \lim_{\varepsilon \to +0} \varepsilon^{-1} \left(\frac{\partial U_{\varepsilon}(x, z, t - \tau)}{\partial \nu_{z}^{\varepsilon}} \frac{\partial U_{\varepsilon}(y, z, \tau)}{\partial \nu_{z}^{\varepsilon}} \rho_{\varepsilon}(z_{\varepsilon}) - \frac{\partial U(y, z, \tau)}{\partial \nu_{z}} \rho_{\varepsilon}(z_{\varepsilon}) \right) d\sigma_{z}.$$

Here $z_{\varepsilon} = z + \varepsilon \rho(z) \nu_z$.

On the other hand, for $z \in \gamma^+$ we have

(2.3)
$$\lim_{\epsilon \to +0} \varepsilon^{-1} \left(\frac{\partial U_{\epsilon}(x, z_{\epsilon}, t)}{\partial \nu_{z_{\epsilon}}^{\epsilon}} - \frac{\partial U(x, z, t)}{\partial \nu_{z}} \right) \\ = \frac{\partial (\partial U)(x, z, t)}{\partial \nu_{z}} + \frac{\partial^{2} U(x, z, t)}{\partial \nu_{z}^{2}} \rho(z).$$

To prove (2.2), we need the following asymptotic expansion which can be proved by using *a priori* estimates of Schauder. See [3].

(2.4)
$$A(z,D)(U_{\epsilon}(x,z,t)-U(x,z,t)) = \varepsilon (A(z,D)\delta U)(x,z,t)+O(\varepsilon^{2}),$$

where $O(\varepsilon^2)$ can be taken to be uniform with respect to $z \in \gamma^+$, t > 0. Here A(z, D) is an arbitrary fixed differential operator of order 1 with $C^{\infty}(\overline{\Omega})$ coefficients. By (2.1) and (2.3), we have the explicit representation of the second term of the left hand side of (2.2), that is

(2.5)
$$2\int_{0}^{t} d\tau \int_{r^{+}} \frac{\partial (\partial U)(x,z,t-\tau)}{\partial \nu_{z}} \frac{\partial U(y,z,\tau)}{\partial \nu_{z}} \rho(z) d\sigma_{z}$$

$$-2\int_{0}^{t} d\tau \int_{r^{+}} \frac{\partial U(x,z,t-\tau)}{\partial \nu_{z}} \frac{\partial U(y,z,\tau)}{\partial \nu_{z}} (n-1) H_{1}(z) \rho(z)^{2} d\sigma_{z}.$$

On γ^- part of the boundary, we have for $z \in \gamma^-$

(2.6)
$$B(z, D)(U(x, z_{\epsilon}, t) - U_{\epsilon}(x, z_{\epsilon}, t)) = -\varepsilon (B(z, D)\delta U_{\epsilon})(x, z_{\epsilon}, t) + O(\varepsilon^{2}),$$

for an arbitrary fixed differential operator B(z,D) of order 1 with $C^{\infty}(\mathbb{R}^n)$ coefficients. Here $O(\varepsilon^2)$ can be taken to be uniform with respect

to $z \in \gamma^-$ and t > 0. Therefore, we get the explicit representation of

$$\frac{\partial}{\partial \varepsilon} \Bigl\{ \int_{\mathfrak{o}}^{t} d\tau \int_{\tau_{\epsilon}^{-}} \frac{\partial U_{\epsilon}(x,z,t-\tau)}{\partial \nu_{z}^{\epsilon}} \, \frac{\partial U_{\epsilon}(y,z,\tau)}{\partial \nu_{z}^{\epsilon}} \rho_{\epsilon}(z) d\sigma_{z}^{\epsilon} \Bigr\}_{|z=0}.$$

Summing up these facts, we have Theorem 1.

It should be remarked that our proof of Theorem 1 is different from the proof of (1.1) given by Garabedian-Schiffer. Their proof depends on the interior variational method. See [1]. Our proof is a development of the original idea of Hadamard by which he studied Hadamard's variational formula.

Proof of Theorem 2 is long, so we will only give a proposition which is important by itself. Details of proof of Theorems 1 and 2 will be given elsewhere.

Proposition 4. For a fixed t>0, there exists positive constant C_{μ} for $\mu \in (0,1)$ such that

$$|\delta U(x, x, t)| \leq C_{\mu}(\operatorname{dist}(x, \gamma))^{\mu}$$

holds.

References

- [1] P. R. Garabedian and M. Schiffer: Convexity of domain functionals. J. Anal. Math., 2, 281-368 (1952-53).
- [2] S. Ozawa: Perturbation of domains and Green kernels of heat equations. Proc. Japan Acad., 54A, 322-325 (1978).
- [3] —: Studies on Hadamard's variational formula. Master's Thesis, Univ. of Tokyo (1979) (in Japanese).