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1. Introduction. In his previous, papers ([3], [4]), the author in-
troduced (C, ]c, )-summation, by means of which Taylor series of the
regular function of bounded type in [zI<l can be summable on Izl=l.
In this note, for the class wider than bounded type, he studies the con-
vergence, the almost everywhere convergence and the mean conver-
gence of this summation.

2. Statement of results. For the sake of completeness, we recall
the definition of (C, k, )-summation. Let f(z)be a regular function
in

f(z)-- , anzn.
n=0

For two constants ], (k>-l, >0), we put
1 exp o , b,(k, oO ,

(l--z)+1 1--Z =0

where

and let

(1) b(/, a)>O, (2) b(]c, aS --+oo,

(I--z)TM
a anetnazn eO) zn.exp , Sn(k, a,

n=0 n=0

If C(k, , e)--Sn(k, a, e)/b(k, a)-+s as n-+oo, we say that the series
7],o ane is summable (C, k, a) to s.

Our Theorem 1 reads as follows.
Theorem 1, Let f(z)-- ,=o aZ be a regular function in

such that
(2.1) lira (1--r).log M(r)- +oo,

where M(r)--max= If(z)l. Then the following propositions hold"
(A) If f(z) has the finite angular limit f(e) at z=e, then for

any a6, =o ae is summable (C, k, a) to f(e).

d-

where p=l-- /a/n,
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We denote by N the class of functions f(z) regular and bounded
type in the unit circle. Then we have

A(f)=lim 1/9.:. log If(re)l d0< -t-c.

N is he subclass of N of funeions f() satisfying

A(f)=lim 1/2. log* If(e)l 0= 1/. log* If(e) 0<

As is applications o he class of bounded ype, we ge wo corollaries.
Corollary 1. Let f(z) Lo az e N in z]<l. Put

=2A(f) lim 1/. log* Z(e) 0.

I <, the the ollowi rooitio holg:

(A) Loe i mmble (C, , ) to f(e) .e. o I1 1.

(B) O. [" C(, , e")- f(oe")IdO= o(1) s

were p= 1-
Corollary 2. Le f(z)=0z N Iz[l. e for

>0, we
A) -o e is smmble (C, , ) o f(e) .e. o [zI=l.

(B) 0. IC(, s, e)--f(oe) g0=o(1) ,

Remark 1. N. Yanagihara ([7, p. gg2], [8]) has independently
introduced he same summation as (C, , )-summation, and he roved
Corollary 2(A) by he entirely differen mehod. He also roved Co-
rollary I(A) for suNciently large ([8]), but it holds for any greater
than ft.

In Theorem I(A), under some additional conditions on the growth
o f(z), we can prove (C, k, ) summability at z=e instead of (C, k, a)
(a) summability. Here we remark that next inclusions hold; or

(C, k, )-summation (C, k, a)-summation Abel summation.
Now we introduce
Definition. Let f(z) be a regular unction in z]l such that

lira (l-r) log M(r)= +,
rl

where M(r)=max=f(z)[. If there exists a constant r(Orl)
such that

M(r)<exp ( ) or rrl,
we say that f(z) has the exact type .

Using Definition, we can prove
Theorem 2. Let f(z)==o anZ be a regular function of the ex-

act type(0+) in ]z](l. Then the following propositions hold:
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(A) Let f(z) have the finite angular limit f(e) at z=e. Then
,__o ae is summable (C, k, ) (k> 1/2) to f(e*O), provided that

lira (l-r) log M(r,

for suciently small >0, where

M(r, A, O) max 1/h. f(re) d

n
d-

where p= 1-- /n.
From Theorem 2, we get the followings

Corollary . Let f(z) =o az eN in z < 1, and let a 2A(f)

(A) If f(z) has the finite angular limit f(e) at z=e, then

=o ae is summable (C, k, ) (k>1/2) to f(e), provided that
lim (1- r). log M(r,
rl

for suciently small

(B) p. C(, , e)-f(oe) dO=O(1) ,
where p=l--/.

Corollary 4. Let f(Z) =o anzn e N in zl< 1, and let a=2A(f)
>0. If

lim (1- r). log M(r, , ’)
rl

where M(r, , ’)=max, f(re) , then =oae is summable
(C,k,a) (k>l/2) to f(e) a.e. on the arc C={e"

Remark 2. In his previous papers ([3, p. 59], [4, p. 287]), the
author proved Corollary 3(A) under the superfluous condition that f(z)
=f(e)+o({z-e) as ze in Stolz domain with its vertex at z=e.. Outline of the proof. Throughout this note, we use the fol-
lowing notations"

=/n, =p()=l-- (>O,n=l, 2,...)
n

() (z’ )
(1-)*

(> )"

o establish our heorems, we need
Lemma 1. The ollowi eqlit holg"

C(, , e) f(oe) O(e4)/b(, ). I(, O)
=O(e4)/b(, ). {I(, 0)+I(, 0)},

where

I(n, O) . [f(pe*(e +))--f(pe*e)] g(pe*) e-*nd,

I,(n, O)= [f(pe(/)) f(pe)] [g(pe’) g(pe(’/ ’))].
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I(n, 0)= [f(pe’(+’)-- f(pe*(a++))] g(pe"+") e-*"Odb.
This lemma is proved by next equalities"

f(ze’) g(z)= S,(k, , e’) z, e-’no= 1/2. (e-’"-e-’"(-").
n=O

Lemma 2. Let f(z) be a function regular in [z[<l and satisfying

M(r)<exp ( ) forO<ro<r<l,

where M(r)=max,= If(z)], fl: a positive constant. Then for any
(0) and suciently large n, we have

i max [f’(pe*(O+*))] dO=O n. exp .
where p=p(a)= 1-- a/n
This lemma is established by E. Goursat’s theorem, Poisson’s integral
and G. H. Hardy’s "Max" ([1, p. 114], [5, p. 186]).

Lemma 3. We have the following estimate:

here O=0() 1- /.
his lemma is roved by elementary bu very delicate calculations.

Outline of the proof of Theorem 1. Wihou any loss of gene-
rality, we can assume ha 0=0. Nor he proof of Par (A), i suf-
fieie to rove that (,, 1)--f(p)=o(1) as +. By (2.1), for
any s (O<s<--), here exists

(3.1) M(r)<exp ( fl ) for r0(D<r<l1-r
By Lemma 1,
(3.2) C(k, a, 1)- f(p) O(e)/b(k, ). I(n, 0).
We divide I(n, O) into two parts:

(8.g) I(, O) + I+I.
We further divide I into wo arts"

I= =I,+I,,
where A z p, D z p, B the first intersection point of the circle
Izi=p and the half straight line: z=l--te- (Ogt< +, 0<0<=/2).
Since f(z) has the finite angular limit f(1) at z= 1, on the arc AB we
have uniformly with respect to

f(pe*O-- f(p)= o(1) as n+
so that, by Lemma 3

II,lo(1)- [g(peO 4<o(1). lg(pe*t) d=o(e-;.b(k,a)).

On the BD, we have
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1 < 1 _/n-_
II-pe]

_
_a’cs0"(l+(1))

for sufficiently large n, where E: z= 1, so that by (3.1)

[I,l2zr.e/-". .exp (Vn .cos . (1+ o(1)))

o(-(, )).,. ex, (.(-1+ +co . (1+ o(1)).
If is sufficiently near u/2, we have

1+ +cos 0. (1+ o(1))< 0.

Hence
[I,I=o(e-. b(k, )),

so that II]=o(e-.b(k,a)). Similarly ]I]=o(e-.b(k,a)). There-
fore, by (3.2) and (3.3)

C(k, a, 1)- f(p) o(1) as n+,
which proves Part (A).

By Lemma 1, we have
(3.4) [Cn(k, , e)--f(pe)IgO(e)/b(k, a)’{I)(O)+I)(O)},
where

By (3.1)

I)(0) f(pe’(+’)-- f(pe’)] Ig(pe’)-g(pe’(+) db,

:,, ,(f(O)dO 8:. exp (,v/ -). f:,, g(petOI db.
By Lemma 2,: I()(O)dO--O(exp (4’.)) f: ,g(peO] d.
Hence, by (3.4)

IC(, , e)-f(pe)l gONO(e4)/b(, )" (peOI

so tha by Lemma ,
_.C(k,a, f(pe)[ dO= .))y" e*) O(exp(V

Since -1+/<0,

[ C(k, a, e*)- f(pe’) dO= o(exp (4 na )) as n+
d-

which proves Part (B), taking account of p-"=exp (na +a/2+o(1)).
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Proof of Corollary 1. since f(z)e N, the following properties
hold:

(1) f(z) has the finite angular limit a.e. on zl=l,
(2) M(r),(exp (fl / (1- r)) for 0<r< 1 ([2, p. 57]), so that

lim (l-r). log M(r)=<_fla.
r--*l

Hence, Corollary 1 follows immediately from Theorem 1.
Proof of Corollary 2. By f(z)e N/, we have
(1) f(z) has the finite angular limit a.e. on
(2) lim (1-r).log M(r)=0 ([6, p. 39]), so that Corollary 2 is an

immediate consequence of Theorem 1.
Theorem 2 is also proved by the arguments which are similar to

Theorem 1, but more delicate.
Prooi: of Corollary 3. Since f(z)e N, we have

( ) orOrl([2, p. 57])(3.5) M(r) <exp -1 r
so that

lim (l-r). log M(r)=3=a.

In the case 6a, by Theorem 1, Corollary 3 holds evidently. In the
case /=a, by (3.5) f(z) has the exact type . Hence, by Theorem 2,
Corollary 3 is proved.

Corollary 4 is an immediate consequence of Corollary 3. More
detailed proof will be published elsewhere in near future.
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