
132 Proc. Japan Acad., 5fl, Ser. A (1979) [Vol. 55 (A),
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In the preceding paper [5], we have defined multiplication rings,
shortly M-rings, as rings s.t. for any ideals a, 5, with a5, here exist
ideals, c, c’, s.t. a=5c=c’5 here "" means, a proper inclusion. An M-
ring is called non-idempotent, i RR. We have proved that the
unique maximal idempotent ideal b of a non-idempotent M-ring can be
obtained as an intersection o some ideal sequence {b.}, where b are
defined inductively ([5], Theorem 5)" b=.e b.. In 1, we shall prove
that b is an essential submodule of R, both as a left and also as a right
R-module, and at the end o the section we shall give an example o a
non-idempotent M-ring with b:/: {0}. If moreover R is left Noetherian,
and let N denote the Jacobson radical of R, then by Theorem 5 (i) [5],
Nb or N=b for some ordinal and some positive integer ]. I N=b
or N= bg, then by Theorem 5 (ii) [5] and Nakayama’s lemma b= {0}, so
we have to consider the case Nb only; so in 2 we consider left
Noetherian non-idempotent M-rings, and prove that any ideal, which
is maximal in the set of ideals properly contained in b, is a prime ideal
of R.

1. Non.idempotent M.rings. Lemma 1. Let R be a non-
idempotent M-ring, and let a be any ideal, s.t. b then
furthermore for an ideal b’ s.t. bb’,

Proof. If = b, there is nothing to prove. If a b, then a=
for some ideals , ’, therefore ab=b’b.b=b’b=a. Similarly

Lemma 2. Let R be a non-idempotent M-ring, and let N b, then
N=I=sJ, where !g and denote the set of maximal left
ideals of R, and all maximal right ideals of R respectively.

Proof. In general, NRIsIN, and isI is an ideal of R.
By Lemma I N=NR, hence equality holds.

Theorem 1. Let R be a non-idempotent M-ring. If R:N, then
N= I: J, where , is the same as Lemma 2.

Proog. By Proposition 4 [5], N=R or N___b. If N=b, then

=bR:NRsIb, therefore b=N=sI. If Nb, the results
follow by Lemma 2.

Lemma 3. Let R be a non-idempotent M-ring, and let I be any

maximal let ideal o/ R, then Ib= b. The similar results hold for right
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ideals.
Proof. Assume that b I. If IR I, then (IR, I) =R since I is.

maximal left ideal of R, therefore b--Rb--(IR, I)b=(Ib, Ib)--Ib, i.e.
Ib=b. If IRI, then I is an ideal, hence Ib or I--b for some ordinal
and some positive integer p, since I is. a maximal left ideal, it follows

that I=R2b, a contradiction. Next let bI, then b=bbIb, i.e.
hence b--Ib. In either case, we have

Theorem 2. Let R be a non-idempotent M-ring, and let I be any
maximal left ideal of R, then for any ideal , s.t. ab, Ia=a. The
similar results hold for right ideals.

Proof. By Lemmas 1 and 3, Ia--- I. ha- Ib a- ha-- a.
Theorem 3. Let R be a non-idempotent M-ring, and let b=/={0},

then 1-annb=r-ann b={0} and bR, i.e. b is essential as left R-
module and also as a right R-module.

Proof. Let n denote/-ann b={x e R lxb={O}}. I n=b or some
ordinal a and some positive integer ], {0} ab bb-- b, a contradiction
if a= b, then {0}=ab--bb-- b, also a contradiction. If nb, then by
Lemma 1 {0}= nb= a. Similarly r-ann b={0}.

Proposition 4. Let R be a non-idempotent M-ring, and let p be
any prime ideal of R, s.t. pa, then pa for any positive integer n.

Theorem 4. Let R be a non-idempotent M-ring, and let b be the
unique maximal idempotent ideal of R. If a, 5 are ideals of R, s.t.
a5b, then there exist ideals of R c, c’, both contained in b, s.t.

C5.
Proof. Iffs obvious by Theorem (i) [] and Lemma 1.
Example. he following is, an example of a non-idempogeng M-

ring with b#={O}. Leg 8 be a matrix-ring of a countable degree,
generated by eounable matrix units e,, (i, ] 1, 9,,... ) over he rational
field. hen 8 is a simple ring, and 8"=8, bu does hog have an
identity. Let A=pZ, where p is a prime, then ideals of A are pZ
(i= 1, 2, .) only. Now we define a ring R as. follows." Let R=(A, S),
and (a, s)=(a’, s’), a, a’e A, s, s’e S, if and only if a=a’ and s=s’;
(a, s) / (a’, s’) (a/ a’, s+ s’), and (a, s)(a’, s’) (aa’, as’+ sa’+ ss’). Then
R is a ring, and (0, S) is. an ideal o R, s.t. (0, S)=(0, S). Now, let
Ji denote pZ, then (Jt, S) i_ 1 are ideals, of R. Let I=(I1, 12)’ be any
ideal of R, where "’" means a subdirect sum, and IA, IS, both
are projections of I respectively into A and S, and I is. an ideal of
A, so I=J, for some positive integer i. We assume that I=/={0},
then I S is. an ideal o S, therefore I S=S or I S= {0}, since S is
simple ring. In case I S=S, I=(I, I2)’(0, S), therefore I2=S, hence
I=(J,, S)’(0, S) for some integer i0, so I=(J,, S). In case IS
={0}, I can not contain any element (0, x), xv0. So, let (a, s) a#0
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be any element of I, then I (a, s)(O, t)=(0, at+st) for any t e S,
therefore at=-st for any t e S. We set -s=(), and t=eq, then

a=fl for any p, a contradiction. Since R=(A,S), b=_R
--(__ (An, S)=(O, S)-O, b=b--b4:{0}.

2. Left Noetherian non.idempotent M.ring. Proposition 5. Let
R be a left Noetherian non-idempotent M-ring, and p be a prime ideal,
s.t. p N then p {0}.

Proof. By Proposition 1 [5] p=NO, so by Nakayama’s lemma

Theorem 5. Let R be a left Noetherian non-idempotent M-ring,
and also a semi-prime ring. Suppose N b, then for any maximal left
ideal I of R,/-ann (I)= {0}, i.e. I is a faithful left R-module.

Proof. Let I be a maximal let ideal o R, and set a=/-ann (I)
={x e R lxI={O}}. Suppose ab, then a=b. or some ordinal and
some positive integer p, by Theorem 5 (i) [5]. Since R is let Noetherian,
I Ru+. +Rur--Zu--. -- Zur, U: O, i-- 1, 2, ., r, where Z de-
notes the ring of integers. Therefore {0} aI aRu + + aRu
+au+ +au au+. +au, since R b".R b . If every u, i
--1, 2, ..., r belong to R, then IgR, therefore by the maximality of
I I=R, hence (O}=aI=b".R=b".=a, i.e. ab, a contradiction. There-
fore, some u e R. Then {O}=au=b".ubu, i.e. bu={0}, by Theorem
3 u=0, a contradiction. Thus we conclude that ab, hence by Theorem
2 Ia a, therefore a Ia. Ia =I. aI. a {0}. Since R is. a semi-prime
ring, a= {0}.

Proposition 6. Let R be a left Noetherian non-idempotent M-ring,
and let Nb. Assume that a is an ideal of R, properly contained in. Let p be maximal in the set of ideals of R, s.t. apb, then p is a

prime ideal of R.
Proof. We assume that is not a prime ideal of R, then there

exist ideals of R a, 5, s.t. aS--0, a0, 50 (mod p). We set (a, p)=a,
(5, p)=5, then a5=(a, p)(5, p)=0 (mod p), and also pa, p5; of
course aa, therefore by the maximality of p a:b, and similarly

5b. Hence by Theorem 5 (i) [5], a--b.b, 5-bb for some ordinals
a, fl and some positive integers i, ]. Therefore abbb=bp, hence

a50 (mod p), a contradiction. Thus p is a prime ideal of R.
Proposition 7o Under the same assumptions as Proposition 6, let

p be maximal in the set of ideals of R, s.t. apb, and let I be any
Then the following statements hold"left ideal of R s. t. p I b.

i) IR=5
ii) P= bI
iii) b=Ib
iv) Ip=p
v) I is an idempotent left ideal of R



No. 4] On the Unique Maximal Idempotent Ideals 135

vi) p_cI for any positive integer n.
Proof. i) Since p<I___ b, p pR_cIR co_. bR b. By the maximality

of p, p=IR or IR=b. But the former does not occur.
ii) Using i) I2I.RI--IR.I=bII2, therefore I2=bI.
iii) Using the results i), ii), IbI.IR=I2.R=bI.R=b.IR=bb=b.
iv) By iii) pIp I. bp-- Ib. p bp-- p, therefore Ip p.
v) By the results, ii), iii), I3=I.P=I.bI=Ib.I=bI=I, i.e. i3=I2,

therefore 12 is an idempotent left ideal of R.
vi) By iv) p Ip c__ I. I 12, so p___ I for any positive integer n.
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