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1. Introduction. Let X be a real Banach space and let X* be the
dual space of X. The value of z* ¢ X* at e X will be denoted by
(z, *). The duality mapping F (multi-valued) from X into X* is
defined by

F(x)={z* ¢ X*: (2, x*)=| 2| and || z*|=| x|} for z e X.

We say that X is smooth, if lim,_,t7'(|z+ty|—| z|) exists for every «
and y with ||z|=||y||=1 (.e., the norm of X is Gateaux differentiable).
It is shown that F is single-valued if and only if X is smooth. The
duality mapping F' of a smooth Banach space X is said to be weakly
continuous at 0 if w-lim,_, 2,=0 in X implies that {F(x,)} converges
weakly* to 0 in X*, where w-lim,_., ¢, denotes the weak limit of {x,}.
It is easily seen that Hilbert space and (I?), 1<p<oo, have this
property.

Throughout the rest of this paper we assume that X is a smooth
and uniformly convex real Banach space having the duality mapping
F which is weakly continuous at 0, and C is a nonempty closed convex
subset of X. A mapping T:C—C is said to be nonexpansive on C,
or T e Cont (C) if |Tx—Ty||<||x—y| for all z,ye C. The set of fixed-
points of 7 will be denoted by ¥(T), i.e., F(T)={x e C: To=ux}.

The purpose of this note is to prove the following

Theorem. Let T e Cont(C) and x € C. The following three con-
ditions are mutually equivalent :

(i) w-lim,_. Trx exists;

(i) F(D>¢ and 0,@)F(T);

(iii) E@)x¢ and w,(x)CE@);
where w,(x) denotes the set of weak subsequential limits of {T™x}, and
E@)={ue C:||T"x—u| converges as n—oo}. Moreover, if w-lim,_. T"x
exists, then it is the asymptotic center of {T"x} with respect to C.

In Hilbert space, the equivalence of (i) and (ii) in Theorem has
been established by A. Pazy [5]. As corollaries of Theorem, we have
the following :

Corollary 1 (Z. Opial [4]). Let T € Cont(C) and xe€C. If F(T)
x¢ and |T " 'xc—T"x||—0 as n—oco, then the sequence {T"x} is weakly
convergent to an element of F(T).
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Corollary 2 (R. E. Bruck [2]). Let X be a real Hilbert space, and
let T e Cont(C) and x e C. Then w-lim,_. T"x exists if and only if
F(T)*¢ and w-lim,, ., (T ¢ —T"x)=0. Moreover, w-lim,_, T"x ¢ F(T)
(¢f the limit exists).

2. Proofs. Let {z,} be a bounded sequence in C and set

r(x)=lim sup,_.. ||, —|| for z € X.
M. Edelstein [3] proved that there is a unique point ¢ € C such that
r(c) <r(x) for x € C\{c}.
The point ¢ is called the asymptotic center of {x,} with respect to C.
We start with the following

Lemma. Let {z,} be a bounded sequence in C, and let ¢ be the
asymptotic center of {x,} with respect to C.

(@) Let {x,} be a subsequence of {x,} and let w-lim,_., x,,=u. If
{llz,—ul|} is convergent, then u=c.

(o) If w-lim,_., x, exists, then w-lim,_. x,=c.

Proof. Note that
2.1 e, —c|P =%, —2|f+2(z—c¢, F(x,—2)) for ze X.

To prove (a), let w-lim,_.. x,,=u and {|x,—u|} be convergent. Letting
n—oo in (2.1) with z replaced by %, we have
r(e)’=lim,_., ¢, —u|*+2 lim sup,_.. (u—c, F'(x,—u)).
Since F' is weakly continuous at 0,
lim sup,_... (u—c¢, F(x,—w) =lim,_.. (u—c, F(z,,—u))=0.
Thus we have that r(¢)*=lim,_... ||z, —u|? i.e., r(c) =r(u). Noting u e C,
it follows from the definition of ¢ that u=c¢. To prove (b), let w-
lim,_.. z,=v. Letting n—oo in (2.1) with z replaced by v, we have
r(e)*=lim sup,_. |2, —v|*+2lim,_.. v —c¢, F(z,—v)) =r(®)*
by the weak continuity of F at 0. This implies that v=c. Q.E.D.

Proof of Theorem. Put z,=T"x for n=1,2, ... Suppose that
w-lim,, ., #, exists. Then {x,} is bouned in C, and hence the asymptotic
center c of {x,} with respect to C exists. It followsfrom Lemma (b) that
w-lim,_,.. 2,=c¢. Since ¢ is a fixed-point of T (see [3, Theorem 1]), w,(x)
={c}CH(T). Thus (i) implies (ii). Noting that {||T"x—u|} is monotone
nonincreasing for every u € &F(T), we have that F(T)C E(x) and hence
(ii) implies (iii). To show that (iii) implies (i), let E(x)x¢ and w,(x)
CE(x). By E(x)x¢, {x,} is a bounded sequence in C and hence w, ()
x¢. Let uew,(x). By o0, )CE@®), {|v,—ul} is convergent. It
follows from Lemma (a) that v=¢, where ¢ is the asymptotic center
of {x,} with respect to C. This means that ,(x)={c}, i.e., w-lim,_.. x,
=c. Q.E.D.

Proof of Corollary 1. By virtue of Theorem, it suffices to show
that 0, (x)CF(T). Let y € 0,(x). There exists a subsequence {n,} of {n}
such that w-lim,_., T™x=y. Moreover, |[(I—T)T"x||—0 as k—co by
our assumption. Thus ¥y e F(T). (For example, see [1, Proposition
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1.3].) Q.E.D.
Proof of Corollary 2. By virtue of Theorem, it suffices to show
that if F(T)x¢ and w-lim,_..(T""'c—T"2)=0 then o, (x)CE(x). To
prove this, let e w,(®) and w-lim,., T*x=u. Now, we want to
show that {|T"x—u|} is convergent. To this end, take an f e % (T)
and set z,=T"x—f. By w-lim,_. (@,,,—,)=w-lim,_., (T*"'c—T"x)
=0, we have
2.2) w-lim,._.., @y, m—2;)=0 for every m=1,2, - . -.
Since
(xm —&ns xlc) = [(xm’ xk+m) - (xm xlc+n)] + [(xn, wk+n—xk) _(xwm Liom— ib'k)],
it follows from (2.2) that
@ =T, u— (=M, (X, — T, T4,))
(2.3) <lim sup;.... (X —2Z,, %)
<lim supe.. (@, Ty m) — @n» Ty )]
Note that
lim supy,-... lim sup,_., lim sup;._... [(%n; Zi 4 m) — @ns Ti 4 )10
(see [2, Proof of Theorem 1.1]). Combining this with (2.3) we have that
lim sup,.. @, u—fH<liminf,_ . (x,, u—f),
i.e., {(x,, u—f)} is convergent. Moreover {||z,|} is convergent. There-
fore || Tre —u|*=|2,|*—2®,, u— f) +||u— f| is also convergent.
Q.E.D.
Added in Proof. After this paper was submitted for publication
the author obtained the following which is an extension of Corollary
2: Let X,C,T and « be as in Theorem. Then w-lim,_. T"x exsists if
and only if ¥(T) ¢ and w-lim,,_.. (T"*'¢—T"x)=0.
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