54. Hyperbolic Nonwandering Sets without Dense Periodic Points

By Masahiro KURATA
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1978)

Let $f: M \to M$ be a C^{∞} diffeomorphism of a closed C^{∞} manifold M, and let $\Omega(f)$ be the nonwandering set of f. $\Omega(f)$ is hyperbolic if $\Omega(f)$ is compact and the restriction $T_{\alpha(f)}M$ of the tangent bundle TM of M on $\Omega(f)$ splits into the Whitney sum of Tf-invariant subbundles

$$T_{\varrho(f)}M=E^s\oplus E^u$$
,

such that given a Riemannian metric on TM there are positive numbers c and $\lambda < 1$ such that $|Tf^nv| < c\lambda^n |v|$, for $v \in E^s$ and n > 0, and $|Tf^{-n}v| < c\lambda^n |v|$, for $v \in E^u$ and n > 0. The following problem was suggested in [3].

Problem. If a nonwandering set $\Omega(f)$ is hyperbolic, are the periodic points dense in $\Omega(f)$?

Newhouse and Palis proved that the answer is affirmative when M is a two dimensional closed manifold ([1] and [2]).

In this paper we give the following

Theorem. Suppose dim $M \ge 4$. Then there is a diffeomorphism $F: M \to M$ such that the nonwandering set $\Omega(F)$ is hyperbolic but its periodic points are not dense in $\Omega(F)$.

Construction. To simplify the construction, we assume $\dim M = 4$.

- 1. Denote $D=[-2,6]\times[-1,3]\subset R^2$. Let an embedding $f:D\to D$ satisfy the followings (Fig. 1). Suppose that real numbers a_{-1},\dots,a_6 satisfy
- (1.1) $a_{-1} = -2 < -1 < a_0 = -a_1 < 0 < a_1 < 1 < a_2 < a_3 < a_4 < 4 < a_5 < 5 < a_6 = 6$, and the rectangle A_i ($i = 0, \dots, 6$) is given by

$$A_i = \{(x, y) \in D \mid a_{i-1} \le x \le a_i\}.$$

Then f satisfies (1.2)–(1.5).

- (1.2) $f|A_0, f|A_2$ and $f|A_6$ are contractions with three sinks (-1,0), (1,0) and (5,2),
 - $(1.3) \quad f(A_4) \subset \operatorname{int} A_0,$
- (1.4) $f|A_i:A_i\rightarrow f(A_i)$ (i=1,3,5) maps A_i linearly onto a rectangle $f(A_i)$, expanding horizontally and contracting vertically. There are two hyperbolic fixed points, (0,0) and (4,2).
 - (1.5) There are numbers $\alpha > 1$ and $0 < \beta < 1$ such that

Fig. 1

$$f(x, y) = \begin{cases} (\alpha x, \beta y) & \text{for } (x, y) \in A_1 \\ (\alpha (x-4)+4, \beta (y-2)+2) & \text{for } (x, y) \in A_5. \end{cases}$$

2. Let $D' \subset R^2$ satisfy the followings (Fig. 2). D' is a neighbourhood of $(\{0\}\times[-1,1])\cup([-2,0]\times\{0\})$ which is diffeomorphic to a 2dimensional disk, and there is a sufficiently small positive number ε

Fig. 2

such that

$$\{(x, y) \in D' | |y+1| \le \varepsilon\} = [-\varepsilon, \varepsilon] \times [-1-\varepsilon, -1+\varepsilon]$$

and

$$\{(x,y) \in D' | |x+1| \le \varepsilon\} = [-1-\varepsilon, -1+\varepsilon] \times [-\varepsilon, \varepsilon].$$

Let an embedding $g: D' \rightarrow D'$ satisfy (2.1)–(2.9).

- $g(D')\subset \operatorname{int} D'$, (2.1)
- (2.2)
- g is isotopic to the identity, $\bigcap_{n>0}g^n(D')\!=\!(\{0\}\!\times\![-1,1])\cup([-2,0]\!\times\!\{0\}),$ (2.3)
- There are five fixed points: three sinks (-2,0), (0,1), (0, -1), and two saddle points (0, 0), (-1, 0).
 - (2.5) $W^u((0,0)) = \{0\} \times (-1,1),$
 - $W^u((-1,0))=(-2,0)\times\{0\},$ (2.6)
 - $W^s((0,0)) \cap D' = \{(x,0) \in D' \mid x \ge -1\},\$ (2.7)

where $W^s(p)$ (resp. $W^u(p)$) is the stable (resp. unstable) manifold through p. (-1,1) and (-2,0) denote open intervals.

(2.8)
$$g(x,y) = \left(\frac{1}{2}x, \frac{1}{2}(y+1) - 1\right) \text{ if } |y+1| \le \varepsilon,$$

(2.9)
$$g(x, y) = \left(2(x+1)-1, \frac{1}{2}y\right) \text{ if } |x+1| \le \varepsilon.$$

3. Define

$$N = D \times D' \bigcup_{\psi} D^{3}(\delta) \times [0, 1],$$

where

$$D^{3}(\delta) = \{(y_1, y_2, y_3) \in R^3 \mid \sqrt{y_1^2 + y_2^2 + y_3^2} \le \delta\}$$

and

$$0 < \delta < \frac{1}{4} \epsilon$$
.

The attaching map

$$\psi: D^3(\delta) \times ([0, \varepsilon] \cup [1-\varepsilon, 1]) \rightarrow D \times D'$$

is given by

$$\psi(y_1, y_2, y_3, t) = \begin{cases} (y_1, y_2, t, y_3 - 1) & \text{if } 0 \le t \le \varepsilon \\ (y_1 + 4, y_2 + 2, y_3 - 1, 1 - t) & \text{if } 1 - \varepsilon \le t \le 1 \end{cases}$$

(Fig. 3).

In §§ 4–10, we will construct an embedding $F: N \to N$. After this, (x_1, x_2, x_3, x_4) (resp. (y_1, y_2, y_3, t)) denotes a point of $D \times D' \subset N$ (resp. $D^3(\delta) \times [0, 1] \subset N$).

- **4.** For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $|x_3 + 1| \ge \varepsilon$ and $|x_4 + 1| \ge \varepsilon$, define (4.1) $F(x_1, x_2, x_3, x_4) = (f(x_1, x_2), g(x_3, x_4))$.
- 5. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $\frac{1}{4} \varepsilon \le |x_4 + 1| \le \varepsilon$, define
- (5.1) $F(x_1, x_2, x_3, x_4) = (f_{|x_4+1|}(x_1, x_2), g(x_3, x_4))$, where $f_t: D \to D$ $(0 \le t \le \varepsilon)$ is an isotopy satisfying (5.2)–(5.6). Suppose that positive numbers b_1, \dots, b_4 satisfy

$$(5.2) \quad 0 < b_1 < b_2 < \delta < b_3 < b_4 < a_1, \qquad \alpha b_1 < b_2,$$

and

$$b_4 < \min \{4 - a_4, a_5 - 4\}.$$

Then

(5.3)
$$f_t(x_1, x_2) = f(x_1, x_2)$$
 if $|x_1| < b_1$ or $|x_1| > b_4$,

(5.4)
$$f_t = f$$
 for $\frac{1}{2} \varepsilon \le t \le \varepsilon$,

(5.5)
$$f_t = f_0 \text{ for } 0 \le t \le \frac{1}{4} \varepsilon$$
,

and

(5.6) $f_t(x_1, x_2) = (\bar{f}_t(x_1), \beta x_2)$ for $|x_1| \le b_4$,

where \bar{f}_t is an isotopy of a neighbourhood of 0 in R^1 and \bar{f}_0 has five fixed points: three sources $0, \pm b_3$, and two sinks $\pm b_2$.

6. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $|x_4 + 1| \le \frac{1}{4} \varepsilon$, F is defined as fol-

lows. Let

(6.1)
$$U = \{(x_1, x_2, x_3, x_4) \in D \times D' \mid \sqrt{x_1^2 + x_2^2 + (x_4 + 1)^2} \le \delta\},$$

and

(6.2)
$$U_1 = \{(x_1, x_2, x_3, x_4) \in D \times D' \mid \sqrt{x_1^2 + x_2^2 + (x_4 + 1)^2} \le \delta_1 \},$$
 where $b_2 < \delta_1 < \delta$.

Then F is defined as follows.

(6.3)
$$F(x_1, x_2, x_3, x_4) = (f_0(x_1, x_2), g(x_3, x_4)) \text{ if } (x_1, x_2, x_3, x_4) \in D \times D'$$

- $U \text{ and } |x_4 + 1| \le \frac{1}{4} \varepsilon,$

(6.4)
$$F(x_1, x_2, x_3, x_4) = \left(f_0(x_1, x_2), \overline{g}(x_1, x_2, x_3, x_4), \frac{1}{2}(x_4+1)-1\right)$$

if $(x_1, x_2, x_3, x_4) \in U \cap F^{-1}(U)$,

where \bar{g} satisfies (6.5)–(6.7).

(6.5)
$$\bar{g}(x_1, x_2, x_3, x_4) = \frac{1}{2}x_3$$
 near the frontier of U ,

(6.6)
$$\bar{g}(x_1, x_2, x_3, x_4) = 2x_3 \text{ if } (x_1, x_2, x_3, x_4) \in U_1 \text{ and } -\frac{1}{4} \varepsilon \leq x_3 \leq \frac{1}{2} \varepsilon,$$

and

(6.7)
$$\bar{g}(x_1, x_2, x_3, x_4)$$
 does not depend on x_1 if $|x_1| \le b_1$.

$$(6.8) \quad F(\{(x_1, x_2, x_3, x_4) \in U \mid x_3 \le 0\}) \subset \{(x_1, x_2, x_3, x_4) \in U \mid x_3 \le 0\}.$$

In $\{(x_1, x_2, x_3, x_4) \in U \mid x_3 \le 0\}$ there are only a finite number of nonwandering points, which are hyperbolic fixed points. Furthermore F satisfies the conditions in § 10.

7. On
$$D^3(\delta) \times [0, 1-\epsilon]$$
, F is given as follows

$$(7.1) F(y_1, y_2, y_3, t) = \left(f_0(y_1, y_2), \frac{1}{2}y_3, \phi(y_1, y_2, y_3, t)\right) \in D^3(\delta) \times [0, 1],$$

where ϕ satisfies the followings.

If
$$\sqrt{y_1^2 + y_2^2 + y_3^2} < \delta_1$$
 or $\frac{1}{2} < t$,

(7.2) $\phi(y_1, y_2, y_3, t)$ depends only on t

and

(7.3)
$$\frac{\partial \phi}{\partial t} > 0$$
.

(7.4)
$$\phi(y_1, y_2, y_3, t) = 1 - \frac{1}{2}(1 - t) \text{ for } 1 - 2\varepsilon \le t \le 1 - \varepsilon.$$

(7.5) $\phi(y_1, y_2, y_3, t) = \overline{g}(y_1, y_2, t, y_3 - 1)$ if $0 \le t \le \varepsilon$. Moreover F satisfies § 10.

8. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $|x_3 + 1| < \frac{1}{4} \varepsilon$,

F is given as follows. Let $h_t: D \rightarrow D \ (0 \le t \le \varepsilon)$ be an isotopy such that

(8.1)
$$h_t = f \text{ if } \frac{1}{2} \varepsilon \leq t \leq \varepsilon$$
,

(8.2) $h_t(x_1, x_2) = f(x_1, x_2)$ if $-2 \le x_1 \le 4 - b_4$ or $4 + b_4 \le x_1 \le 6$, and

anu

(8.3)
$$h_t(x_1, x_2) = f(x_1 - 4, x_2 - 2) + (4, 2)$$
 if $|x_1 - 4| \le b_4$.

Then

(8.4)
$$F(x_1, x_2, x_3, x_4) = \left(h_0(x_1, x_2), \bar{h}(x_1, x_2, x_3, x_4), \frac{1}{2}x_4\right),$$

where \bar{h} satisfies the followings.

$$(8.5) \quad \bar{h}(x_1, x_2, x_3, x_4) = \frac{1}{2}(x_3 + 1) - 1 \text{ if } \sqrt{(x_1 - 4)^2 + (x_2 - 2)^2 + (x_3 + 1)^2}$$

$$\leq \delta \text{ and } x_4 > \frac{2}{2} \varepsilon,$$

(8.6)
$$\bar{h}(x_1, x_2, x_3, x_4) = 2(x_3 + 1) - 1$$
 if $\sqrt{(x_1 - 4)^2 + (x_2 - 2)^2 + (x_3 + 1)^2}$

$$\geq \delta_2 \text{ or } x_4 < \frac{1}{3} \varepsilon$$
,

where $\delta < \delta_2 < \frac{1}{4} \varepsilon$.

(8.7) $\bar{h}(x_1, x_2, x_3, x_4)$ does not depend on x_1 if $|x_1-4| \le b_1$. Furthermore F satisfies § 10.

9. For
$$(x_1, x_2, x_3, x_4) \in D \times D'$$
 with $\frac{1}{4} \varepsilon \le |x_3 + 1| \le \varepsilon$, define

$$(9.1) \quad F(x_1, x_2, x_3, x_4) = \left(h_{|x_3+1|}(x_1, x_2), 2(x_3+1) - 1, \frac{1}{2}x_4\right).$$

10. F is an embedding of N such that

(10.1)
$$F(N) \subset \operatorname{int} N$$
,

and

- (10.2) F is isotopic to the identity.
- 11. Straightening the corner (and modifying F near the corner), we can regard N as a submanifold of M which is diffeomorphic to $D^3 \times S^1$. Extend F to a diffeomorphism of M such that the nonwandering sets of F in M-N consists of a finite number of hyperbolic fixed points.
- 12. The nonwandering set of F consists of a finite number of hyperbolic fixed points and two non-periodic orbits $\{(x_1, x_2, 0, 0) \in D \times D' | (x_1, x_2) \text{ satisfies } (12. i)\}$ (i=1,2), where
 - (12.1) there is an integer n_0 such that

$$f^{n}(x_{1}, x_{2}) \in A_{5}$$
 if $n < n_{0}$,
 $f^{n}(x_{1}, x_{2}) \in A_{3}$ if $n = n_{0}$,
 $f_{n}(x_{1}, x_{2}) \in A_{1}$ if $n > n_{0}$,

and

(12.2) there is an integer n_0 such that

$$f^n(x_1, x_2) \in A_5$$
 if $n < n_0$,
 $f^n(x_1, x_2) \in A_1$ if $n \ge n_0$.

The details will be published elsewhere.

References

- S. Newhouse and J. Palis: Hyperbolic nonwandering sets on two-dimensional manifolds. Dynamical Systems (M. M. Peixoto ed.), Academic Press (1973).
- [2] J. Palis and C. C. Pugh: Fifty problems in dynamical systems. Dynamical Systems-Warwick 1974 (A. Manning ed.), Lectures Notes in Math., no. 468, Springer-Verlag (1975).
- [3] S. Smale: Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-817 (1967).