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Introduction. Ju. V. Linnik (1950) posed the following problem.
Let F be a finite extension of the rational number field Q, K/F a finite
extension, i- 1, ., r, r >__ 1 an integer, Z, a GrSssencharacter of K,
L(s, Z,)-o c,(a)N(a) the Hecke L-function expanded over integral
ideals a of F with considering L(s, ) as an Euler product over F in
the natural way. Then is L(s, Z, "", Z)=,o c(a).., c(a)N(a)-meromorphic on the complex numbers C? (Originally Linnik posed
the problem for F=Q.) The answer seemed to be .affirmative in gen-
eral and Draxl [1] proved the ollowing theorem in a generalized form
after some results b,y B. Z. Moroz and A. I. Vinogradov.

Theorem (Dr.axl). If Zi are unitary Gr6ssencharacters (i-1, ...,
r) then LF(s, 1, ’’’, r) is meromorphic in Re (s)0.

The purpose of this paper is to show that L(s, Z,’" ", Z,)is not
necessarily meromorphic on C. We prove ollowing Theorem 1 using
Theorem 2 of [3] whose proof is described in Part I of [4]. We follow
the notations o [3].

Theorem 1. Let F/Q be a finite extension, Ki/F a finite exten-
sion of degree n, [K," F], Z, a Gr6ssencharacter of K, of finite order,
i--1, ...,r, n-(nl, ...,nr), l <=n <= <=n,, r>=l an integer. Then"

(1) n is of type I@LF(s, Zl, "", Z,) is meromorphic on C.
(2) n is of type II(==L(S, Zl, "",

with the natural boundary Re (s)--0.
1. Tensor products. Let F/Q be

finite extension, Z, a GrSssencharacter of K,, i= 1, ..., r, r__>l an inte-
ger. By considering L(s, Z,) to be an Euler product over F in the nat-
ural way, we write L(s, Z)= l-[ det (1-M,,,N(o)-)- where p runs over
all prime ideals of F and M, is a complex square matrix for each
We put L(s, Z(R)’" "(R)Z,) I-I, det (1--M,(R)...(R)M,,N(o)-)-. Then
this Euler product does not depend on the choice of M,,, and we call
it the tensor product over F of L(s, Z,), i-1, ...,r. L(s, Z,’",
(defined as in Introduction) is called the scalar product over F of
L(s, Z), i-- 1, ..., r.

Theorem 2. Let F/Q, Ki/F, z,,i-1, ...,r be as above. Then
L(s, Zl(R)’" "(R)Z) is meromorphic on C.

Proof. Let W=W(F/F) and W-W(F/K) be the absolute Weil
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groups of F and K respectively, where F is an algebraic closure of F.
We denote by W the maximal abelian quotient o W as a topological
group. We denote by C the idele class group of K. Since W. C
and Z" CGL(1, C) is a continuous homomorphism, we can naturally
regard ; as a continuous homomorphism Z" WGL(1, C). Let
p-Ind (W, W;;) the induced representation. Since W is a sub-
group of Wr of index n-[K" F], we have a continuous homomorphism
p" WGL(n, C) and the ollowing equality holds" L(s, )-L(s, p).
Here L(s, p) is the Artin-Hecke L-function defined by Weil [5]. Then
it is obvious that L(s, Z(R)" .(R)Z)-L(s, p(R). .(R)p). (This and similar
equations hereafter hold except for a finite number of Euler factors.)
Hence L(s, Z(R)’"" (R)Z.) is meromorphic on C. Q.E.D.

Remark 1. Let L(s, H) (i-- 1, ., r r>__l an integer) be Euler
products over F. Then the tensor product L(s, HI .Hr) and the
scalar product L(s, H,..., H) of these Euler products are defined in
the same manner as above, and L(s, H(R). (R)Hg. L(s, tt, ., H)- is
an Euler product over F (cf. [4], Part I).

2. Type I case. Theorem 3. Let F/Q,K/F,z,i--1,...,r
be as in 1. Assume that =(n, .,n) with n-[K" F] is of type
I. Then Lr(s, , ..., Z) is meromorphic on C.

Proof. An easy calculation shows that" L(s, Z, "", Z)--L(s,
(R)...(R)z)

1 if n=(1, ..., 1,.),x
L(2s, p)-’ with p-(p. p_) det (p,-1) det (p,) if n-(1, ., 1, 2, 2).

Here p is associated to z as in the proof of Theorem 1. Hence
L(s, Z, Z,) is meromorphic on C. Q.E.D.

Remark 2. The case n-(2, 2) is treated in Fomenko [2] by a dif-
ferent method.

3. Type II case. Theorem 4. Let F/Q, K/F, Z, i--l, .,r
be as in 1. Assume that n=(n, ...,n) with n=[K" F] is of type
II and are of finite order. Then L(s, Zl, "", ) is meromorphic in
Re (s)0 with the natural boundary Re (s)-0.

Proof. To prove this we use Theorem 2 of [3] whose proof is
described in [4] (Part I). Since z" C--.GL(1, C) is a continuous
homomorphism of finite order (C being as in 1), there exists a con-
tinuous homomorphism ,p" Gal (F/K)GL(1, C) such that L(s,

L(s, p) by Artin’s reciprocity law, where F is an algebraic closure of
F. Let p--Ind (Gal (F/F), Gal (F/K); p) the induced representation.
Let K--F with N=Ker (p) fl fq Ker (p), where F is the fixed field
of N in F. Since N is an open normal subgroup of Gal (F/F), K/F is
a finite Galois extension with Gal (K/F)- Gal (/F)/N. Then we can
regard p as a homomorphism p" Gal (K/F)GL(n, C) in the natural
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way and L(s, po)___L(s, p). Hence L(s, Z)-L(s, ) and L(s, Z, "", Z)
--L(s, p, ..., p). To the right hand side we can apply Theorem 2 o
[3] ((2)) and we get Theorem 4. Q.E.D.

Theorem 1 stated in Introduction follows easily rom Theorems 3
and 4. (Otherwise we may apply Theorem 2 of [3] directly.)

Remark 3. The condition that Z are of finite order is weakened
to some extent by generalizing Theorem 2 of [3] to the case of represen-
tations o the Weil group W(K/F). As a particular case of this gen-
eralization we have Draxl’s theorem in Introduction also (cf. [4], Parts
II and III).
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