43. On Linnik's Problem

By Nobushige KUROKAWA Department of Mathematics, Tokyo Institute of Technology (Communicated by Kunihiko KODAIRA, M.J.A., June 15, 1978)

Introduction. Ju. V. Linnik (1950) posed the following problem. Let F be a finite extension of the rational number field $Q, K_i/F$ a finite extension, $i=1,\dots,r, r\geq 1$ an integer, χ_i a Grössencharacter of K_i , $L(s, \chi_i)=\sum_{\alpha} c_i(\alpha)N(\alpha)^{-s}$ the Hecke L-function expanded over integral ideals a of F with considering $L(s, \chi_i)$ as an Euler product over F in the natural way. meromorphic on the complex numbers C ? (Originally Linnik posed Then is $L_F(s, \chi_1, \cdots, \chi_r) = \sum_a c_1(\mathfrak{a}) \cdots c_r(\mathfrak{a}) N(\mathfrak{a})$ the problem for $F=Q$.) The answer seemed to be affirmative in general and Draxl [1] proved the following theorem in a generalized form after some results by B. Z. Moroz and A. I. Vinogradov.

Theorem (Draxl). If χ_i are unitary Grössencharacters (i=1, ..., r) then $L_F(s, \chi_1, \cdots, \chi_r)$ is meromorphic in Re(s)>0.

The purpose of this paper is to show that $L_r(s, \chi_1, \dots, \chi_r)$ is not necessarily meromorphic on C . We prove following Theorem 1 using Theorem ² of [3] whose proof is described in Part ^I of [4]. We follow the notations of [3].

Theorem 1. Let F/Q be a finite extension, K_i/F a finite extension of degree $n_i = [K_i : F]$, χ_i a Grössencharacter of K_i of finite order, $i=1, \dots, r, n=(n_1, \dots, n_r), 1 \leq n_1 \leq \dots \leq n_r, r \geq 1$ an integer. Then:

(1) **n** is of type $I \Leftrightarrow L_F(s, \chi_1, \cdots, \chi_r)$ is meromorphic on C.

(2) **n** is of type $\text{II}\bigoplus L_F(s,\chi_1,\cdots,\chi_r)$ is meromorphic in $\text{Re}(s) > 0$ with the natural boundary Re $(s)=0$.

§ 1. Tensor products. Let F/Q be a finite extension, K_i/F a finite extension, χ_i a Grössencharacter of K_i , $i=1,\dots,r$, $r\geq 1$ an integer. By considering $L(s, \chi_i)$ to be an Euler product over F in the natural way, we write $L(s, \chi_i) = \prod_k \det (1-M_{i,j}N(\mathfrak{p})^{-s})^{-1}$ where \mathfrak{p} runs over ural way, we write $L(s,\chi_i)=\prod_\mathfrak{p}\det{(1-M_{i,\mathfrak{p}}N(\mathfrak{p})^{-s})^{-1}}$ where \mathfrak{p} runs over all prime ideals of F and $M_{i,\mathfrak{p}}$ is a complex square matrix for each $\mathfrak{p}.$ We put $L_F(s, \chi_1 \otimes \cdots \otimes \chi_r) = \prod_{\mathfrak{p}} \det (1-M_{1,\mathfrak{p}} \otimes \cdots \otimes M_{r,\mathfrak{p}}N(\mathfrak{p})^{-s})^{-1}$. Then this Euler product does not depend on the choice of $M_{i,p}$ and we call it the tensor product over F of $L(s, \chi_i)$, $i=1, \dots, r$. $L_F(s, \chi_1, \dots, \chi_r)$ (defined as in Introduction) is called the scalar product over F of $L(s, \gamma_i), i=1, \cdots, r.$

Theorem 2. Let $F/Q, K_i/F, \chi_i, i=1, \cdots, r$ be as above. Then $L_F(s, \chi_1 \otimes \cdots \otimes \chi_r)$ is meromorphic on C.

Proof. Let $W_{\bar{r}} = W(\bar{F}/F)$ and $W_i = W(\bar{F}/K_i)$ be the absolute Weil

groups of F and K_i respectively, where \overline{F} is an algebraic closure of F. We denote by W_i^{ab} the maximal abelian quotient of W_i as a topological group. We denote by C_i the idele class group of K_i . Since $W_i^{ab} \cong C_i$ and $\chi_i : C_i \rightarrow GL(1, C)$ is a continuous homomorphism, we can naturally regard γ_i as a continuous homomorphism $\gamma_i : W_i \rightarrow GL(1, C)$. Let regard χ_i as a continuous homomorphism $\chi_i : W_i \rightarrow GL(1, C)$. $\rho_i = \text{Ind}(W_F, W_i; \chi_i)$ the induced representation. Since W_i is a subgroup of W_F of index $n_i=[K_i : F]$, we have a continuous homomorphism $\rho_i: W_F \to GL(n_i, \mathbb{C})$ and the following equality holds: $L(s, \chi_i) = L(s, \rho_i)$. Here $L(s, \rho_i)$ is the Artin-Hecke L-function defined by Weil [5]. Then it is obvious that $L_r(s, \chi_1 \otimes \cdots \otimes \chi_r) = L(s, \rho_1 \otimes \cdots \otimes \rho_r)$. (This and similar equations hereafter hold except for a finite number of Euler factors.) Hence $L_r(s, \chi_1 \otimes \cdots \otimes \chi_r)$ is meromorphic on C. Q.E.D.

Remark 1. Let $L(s, H^{i})$ $(i=1, \dots, r; r \geq 1$ an integer) be Euler products over F. Then the tensor product $L(s, H¹ \otimes \cdots \otimes H^r)$ and the scalar product $L(s, H^1, \dots, H^r)$ of these Euler products are defined in the same manner as above, and $L(s, H^{1} \otimes \cdots \otimes H^{r}) \cdot L(s, H^{1}, \cdots, H^{r})^{-1}$ is an Euler product over F (cf. [4], Part I). an Euler product over F (cf. [4], Part I).

§ 2. Type I case. Theorem 3. Let $F/Q, K_i/F, \chi_i, i=1,\dots, r$ be as in § 1. Assume that $\mathbf{n}=(n_1, \dots, n_r)$ with $n_i=[K_i : F]$ is of type I. Then $L_F(s, \chi_1, \ldots, \chi_r)$ is meromorphic on C.

Proof. An easy calculation shows that : $L_F(s, \chi_1, \dots, \chi_r) = L_F(s, \chi_1)$ $\otimes \cdots \otimes \gamma_r$

 $\times \begin{cases} 1 & \text{if } n=(1,\dots,1,*), \\ 1 & \text{if } n \neq 1, \dots, n \end{cases}$

 $L(2s, \rho)^{-1}$ with $\rho = (\rho_1 \cdots \rho_{r-2})^2$ det (ρ_{r-1}) det (ρ_r) if $n = (1, \cdots, 1, 2, 2)$. Here ρ_i is associated to χ_i as in the proof of Theorem 1. Hence $L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic on C. $Q.E.D.$

Remark 2. The case $n=(2, 2)$ is treated in Fomenko [2] by a different method.

§3. Type II case. Theorem 4. Let $F/Q, K_i/F, \chi_i, i=1,\dots, r$ be as in § 1. Assume that $\mathbf{n}=(n_1, \dots, n_r)$ with $n_i=[K_i : F]$ is of type II and χ_i are of finite order. Then $L_F(s, \chi_1, \cdots, \chi_r)$ is meromorphic in $\text{Re}(s) > 0$ with the natural boundary $\text{Re}(s) = 0$.

Proof. To prove this we use Theorem 2 of [3] whose proof is described in [4] (Part I). Since $\chi_i : C_i \rightarrow GL(1, \mathbb{C})$ is a continuous homomorphism of finite order (C_i) being as in § 1), there exists a continuous homomorphism ρ_i^0 : Gal $(\overline{F}/K_i) \rightarrow GL(1, C)$ such that $L(s, \gamma_i)$ $=L(s, \rho_i^0)$ by Artin's reciprocity law, where \overline{F} is an algebraic closure of F. Let $\rho_i = \text{Ind } (Gal(F/F), Gal(F/K_i); \rho_i^0)$ the induced representation. Let $K=\overline{F}^N$ with $N=\mathrm{Ker} (\rho_1) \cap \cdots \cap \mathrm{Ker} (\rho_r)$, where \overline{F}^N is the fixed field of N in \overline{F} . Since N is an open normal subgroup of Gal (\overline{F}/F) , K/F is a finite Galois extension with Gal $(K/F) \cong$ Gal $(\overline{F}/F)/N$. Then we can regard ρ_i as a homomorphism ρ_i : Gal $(K/F) \rightarrow GL(n_i, C)$ in the natural

way and $L(s, \rho_i^0) = L(s, \rho_i)$. Hence $L(s, \chi_i) = L(s, \rho_i)$ and $L_F(s, \chi_1, \cdots, \chi_r)$ $=L(s, \rho_1, \dots, \rho_r)$. To the right hand side we can apply Theorem 2 of $[3] ((2) \Rightarrow)$ and we get Theorem 4. Q.E.D.

Theorem 1 stated in Introduction follows easily from Theorems 3 and 4. (Otherwise we may apply Theorem 2 of [3] directly.)

Remark 3. The condition that χ_i are of finite order is weakened to some extent by generalizing Theorem 2 of [3] to the case of representations of the Weil group $W(K/F)$. As a particular case of this generalization we have Draxl's theorem in Introduction also (cf. [4], Parts II and III).

References

- [1] P. K. J. Draxl: L-Funktionen algebraischer Tori. J. Number Theory, 3, 444-467 (1971).
- [2] O.M. Fomenko: Extendability to the whole plane and the functional equation for the scalar product of Hecke L -series of two quadratic fields. Trudy Mat. Inst. Steklov., 128, 232-241 (1972) (in Russian); Proc. Steklov. Inst. Math., 128, 275-286 (1972) (English translation).
- [3] N. Kurokawa: On the meromorphy of Euler products. Proc. Japan Acad.,

54A, 163–166 (1978).

[4] ----: On the meromorphy of Euler products. I, II, III (preprints).

[5] A Weil: Sur la théorie du cerne de classes. I Met 54A, 163-166 (1978).
-
- [5] A. Weil: Sur la théorie du corps de classes. J. Math. Soc. Japan, 3, 1-35 (1951).