43. On Linnik's Problem

By Nobushige KUROKAWA Department of Mathematics, Tokyo Institute of Technology (Communicated by Kunihiko KODAIRA, M. J. A., June 15, 1978)

Introduction. Ju. V. Linnik (1950) posed the following problem. Let F be a finite extension of the rational number field $Q, K_i/F$ a finite extension, $i=1, \dots, r, r \ge 1$ an integer, χ_i a Grössencharacter of K_i , $L(s, \chi_i) = \sum_{\alpha} c_i(\alpha)N(\alpha)^{-s}$ the Hecke L-function expanded over integral ideals α of F with considering $L(s, \chi_i)$ as an Euler product over F in the natural way. Then is $L_F(s, \chi_1, \dots, \chi_r) = \sum_{\alpha} c_1(\alpha) \dots c_r(\alpha)N(\alpha)^{-s}$ meromorphic on the complex numbers C? (Originally Linnik posed the problem for F = Q.) The answer seemed to be affirmative in general and Draxl [1] proved the following theorem in a generalized form after some results by B. Z. Moroz and A. I. Vinogradov.

Theorem (Draxl). If χ_i are unitary Grössencharacters $(i=1, \dots, r)$ then $L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic in Re (s) > 0.

The purpose of this paper is to show that $L_F(s, \chi_1, \dots, \chi_7)$ is not necessarily meromorphic on C. We prove following Theorem 1 using Theorem 2 of [3] whose proof is described in Part I of [4]. We follow the notations of [3].

Theorem 1. Let F/Q be a finite extension, K_i/F a finite extension of degree $n_i = [K_i: F]$, χ_i a Grössencharacter of K_i of finite order, $i=1, \dots, r, n=(n_1, \dots, n_r), 1 \leq n_1 \leq \dots \leq n_r, r \geq 1$ an integer. Then:

(1) **n** is of type $I \Leftrightarrow L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic on C.

(2) *n* is of type $II \Leftrightarrow L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic in $\operatorname{Re}(s) > 0$ with the natural boundary $\operatorname{Re}(s) = 0$.

§1. Tensor products. Let F/Q be a finite extension, K_i/F a finite extension, χ_i a Grössencharacter of K_i , $i=1, \dots, r, r \ge 1$ an integer. By considering $L(s,\chi_i)$ to be an Euler product over F in the natural way, we write $L(s,\chi_i) = \prod_{\nu} \det (1-M_{i,\nu}N(\mathfrak{p})^{-s})^{-1}$ where \mathfrak{p} runs over all prime ideals of F and $M_{i,\nu}$ is a complex square matrix for each \mathfrak{p} . We put $L_F(s,\chi_1\otimes\cdots\otimes\chi_r)=\prod_{\nu} \det (1-M_{1,\nu}\otimes\cdots\otimes M_{r,\nu}N(\mathfrak{p})^{-s})^{-1}$. Then this Euler product does not depend on the choice of $M_{i,\nu}$ and we call it the tensor product over F of $L(s,\chi_i), i=1, \dots, r$. $L_F(s,\chi_1,\dots,\chi_r)$ (defined as in Introduction) is called the scalar product over F of $L(s,\chi_i), i=1, \dots, r$.

Theorem 2. Let F/Q, K_i/F , χ_i , $i=1, \dots, r$ be as above. Then $L_F(s, \chi_1 \otimes \dots \otimes \chi_r)$ is meromorphic on C.

Proof. Let $W_F = W(\overline{F}/F)$ and $W_i = W(\overline{F}/K_i)$ be the absolute Weil

groups of F and K_i respectively, where \overline{F} is an algebraic closure of F. We denote by W_i^{ab} the maximal abelian quotient of W_i as a topological group. We denote by C_i the idele class group of K_i . Since $W_i^{ab} \cong C_i$ and $\chi_i: C_i \rightarrow GL(1, \mathbb{C})$ is a continuous homomorphism, we can naturally regard χ_i as a continuous homomorphism $\chi_i: W_i \rightarrow GL(1, C)$. Let $\rho_i = \text{Ind}(W_F, W_i; \chi_i)$ the induced representation. Since W_i is a subgroup of W_F of index $n_i = [K_i : F]$, we have a continuous homomorphism $\rho_i: W_F \to GL(n_i, C)$ and the following equality holds: $L(s, \chi_i) = L(s, \rho_i)$. Here $L(s, \rho_i)$ is the Artin-Hecke L-function defined by Weil [5]. Then it is obvious that $L_F(s, \chi_1 \otimes \cdots \otimes \chi_r) = L(s, \rho_1 \otimes \cdots \otimes \rho_r)$. (This and similar equations hereafter hold except for a finite number of Euler factors.) Hence $L_F(s, \chi_1 \otimes \cdots \otimes \chi_r)$ is meromorphic on *C*. Q.E.D.

Remark 1. Let $L(s, H^i)$ $(i=1, \dots, r; r \ge 1$ an integer) be Euler products over F. Then the tensor product $L(s, H^1 \otimes \cdots \otimes H^r)$ and the scalar product $L(s, H^1, \dots, H^r)$ of these Euler products are defined in the same manner as above, and $L(s, H^1 \otimes \cdots \otimes H^r) \cdot L(s, H^1, \cdots, H^r)^{-1}$ is an Euler product over F (cf. [4], Part I).

Theorem 3. Let F/Q, K_i/F , χ_i , $i=1, \dots, r$ §2. Type I case. be as in §1. Assume that $\mathbf{n} = (n_1, \dots, n_r)$ with $n_i = [K_i: F]$ is of type Then $L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic on C. I.

Proof. An easy calculation shows that: $L_F(s, \chi_1, \dots, \chi_r) = L_F(s, \chi_1, \dots, \chi_r)$ $\otimes \cdots \otimes \gamma_r$)

 $\times \begin{cases} 1 & \text{if } n = (1, \dots, 1, *), \\ L(2s, \rho)^{-1} & \text{with } \rho = (\rho_1 \dots \rho_{r-2})^2 \det (\rho_{r-1}) \det (\rho_r) \text{ if } n = (1, \dots, 1, 2, 2). \end{cases}$ Here ρ_i is associated to χ_i as in the proof of Theorem 1. Hence $L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic on C. Q.E.D.

Remark 2. The case n = (2, 2) is treated in Fomenko [2] by a different method.

§3. Type II case. Theorem 4. Let F/Q, K_i/F , χ_i , $i=1, \dots, r$ be as in §1. Assume that $\mathbf{n} = (n_1, \dots, n_r)$ with $n_i = [K_i; F]$ is of type II and χ_i are of finite order. Then $L_F(s, \chi_1, \dots, \chi_r)$ is meromorphic in $\operatorname{Re}(s) > 0$ with the natural boundary $\operatorname{Re}(s) = 0$.

Proof. To prove this we use Theorem 2 of [3] whose proof is described in [4] (Part I). Since $\chi_i: C_i \rightarrow GL(1, C)$ is a continuous homomorphism of finite order (C_i being as in § 1), there exists a continuous homomorphism ρ_i^0 : Gal $(\overline{F}/K_i) \rightarrow GL(1, C)$ such that $L(s, \gamma_i)$ $=L(s, \rho_i^0)$ by Artin's reciprocity law, where \overline{F} is an algebraic closure of F. Let $\rho_i = \text{Ind} (\text{Gal}(\overline{F}/F), \text{Gal}(\overline{F}/K_i); \rho_i^0)$ the induced representation. Let $K = \overline{F}^N$ with $N = \text{Ker}(\rho_1) \cap \cdots \cap \text{Ker}(\rho_r)$, where \overline{F}^N is the fixed field of N in \overline{F} . Since N is an open normal subgroup of Gal (\overline{F}/F), K/F is a finite Galois extension with Gal $(K/F) \cong$ Gal $(\overline{F}/F)/N$. Then we can regard ρ_i as a homomorphism ρ_i : Gal $(K/F) \rightarrow GL(n_i, C)$ in the natural

way and $L(s, \rho_i^0) = L(s, \rho_i)$. Hence $L(s, \chi_i) = L(s, \rho_i)$ and $L_F(s, \chi_1, \dots, \chi_r) = L(s, \rho_1, \dots, \rho_r)$. To the right hand side we can apply Theorem 2 of [3] ((2) \Rightarrow) and we get Theorem 4. Q.E.D.

Theorem 1 stated in Introduction follows easily from Theorems 3 and 4. (Otherwise we may apply Theorem 2 of [3] directly.)

Remark 3. The condition that χ_i are of finite order is weakened to some extent by generalizing Theorem 2 of [3] to the case of representations of the Weil group W(K/F). As a particular case of this generalization we have Draxl's theorem in Introduction also (cf. [4], Parts II and III).

References

- P. K. J. Draxl: L-Funktionen algebraischer Tori. J. Number Theory, 3, 444-467 (1971).
- [2] O. M. Fomenko: Extendability to the whole plane and the functional equation for the scalar product of Hecke L-series of two quadratic fields. Trudy Mat. Inst. Steklov., 128, 232-241 (1972) (in Russian); Proc. Steklov. Inst. Math., 128, 275-286 (1972) (English translation).
- [3] N. Kurokawa: On the meromorphy of Euler products. Proc. Japan Acad., 54A, 163-166 (1978).
- [4] ——: On the meromorphy of Euler products. I, II, III (preprints).
- [5] A. Weil: Sur la théorie du corps de classes. J. Math. Soc. Japan, 3, 1-35 (1951).

No. 6]